|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
import torch.nn.functional as F |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection |
|
|
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AsymmetricAutoencoderKL, AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import USE_PEFT_BACKEND, deprecate, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.models.attention_processor import Attention, AttnProcessor2_0 |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class PAGIdentitySelfAttnProcessor: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states_org) |
|
key = attn.to_k(hidden_states_org) |
|
value = attn.to_v(hidden_states_org) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_org = hidden_states_org.to(query.dtype) |
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org) |
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org) |
|
|
|
if input_ndim == 4: |
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) |
|
|
|
value = attn.to_v(hidden_states_ptb) |
|
|
|
|
|
hidden_states_ptb = value |
|
|
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype) |
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb) |
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb) |
|
|
|
if input_ndim == 4: |
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
class PAGCFGIdentitySelfAttnProcessor: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
*args, |
|
**kwargs, |
|
) -> torch.FloatTensor: |
|
if len(args) > 0 or kwargs.get("scale", None) is not None: |
|
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." |
|
deprecate("scale", "1.0.0", deprecation_message) |
|
|
|
residual = hidden_states |
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) |
|
hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_org.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states_org) |
|
key = attn.to_k(hidden_states_org) |
|
value = attn.to_v(hidden_states_org) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
hidden_states_org = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states_org = hidden_states_org.to(query.dtype) |
|
|
|
|
|
hidden_states_org = attn.to_out[0](hidden_states_org) |
|
|
|
hidden_states_org = attn.to_out[1](hidden_states_org) |
|
|
|
if input_ndim == 4: |
|
hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
batch_size, sequence_length, _ = hidden_states_ptb.shape |
|
|
|
if attention_mask is not None: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) |
|
|
|
value = attn.to_v(hidden_states_ptb) |
|
hidden_states_ptb = value |
|
hidden_states_ptb = hidden_states_ptb.to(query.dtype) |
|
|
|
|
|
hidden_states_ptb = attn.to_out[0](hidden_states_ptb) |
|
|
|
hidden_states_ptb = attn.to_out[1](hidden_states_ptb) |
|
|
|
if input_ndim == 4: |
|
hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
|
|
hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
|
|
def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): |
|
""" |
|
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be |
|
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the |
|
``image`` and ``1`` for the ``mask``. |
|
|
|
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be |
|
binarized (``mask > 0.5``) and cast to ``torch.float32`` too. |
|
|
|
Args: |
|
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. |
|
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` |
|
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. |
|
mask (_type_): The mask to apply to the image, i.e. regions to inpaint. |
|
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` |
|
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. |
|
|
|
|
|
Raises: |
|
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask |
|
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. |
|
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not |
|
(ot the other way around). |
|
|
|
Returns: |
|
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 |
|
dimensions: ``batch x channels x height x width``. |
|
""" |
|
deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead" |
|
deprecate( |
|
"prepare_mask_and_masked_image", |
|
"0.30.0", |
|
deprecation_message, |
|
) |
|
if image is None: |
|
raise ValueError("`image` input cannot be undefined.") |
|
|
|
if mask is None: |
|
raise ValueError("`mask_image` input cannot be undefined.") |
|
|
|
if isinstance(image, torch.Tensor): |
|
if not isinstance(mask, torch.Tensor): |
|
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") |
|
|
|
|
|
if image.ndim == 3: |
|
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" |
|
image = image.unsqueeze(0) |
|
|
|
|
|
if mask.ndim == 2: |
|
mask = mask.unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
if mask.ndim == 3: |
|
|
|
if mask.shape[0] == 1: |
|
mask = mask.unsqueeze(0) |
|
|
|
|
|
else: |
|
mask = mask.unsqueeze(1) |
|
|
|
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" |
|
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" |
|
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" |
|
|
|
|
|
if image.min() < -1 or image.max() > 1: |
|
raise ValueError("Image should be in [-1, 1] range") |
|
|
|
|
|
if mask.min() < 0 or mask.max() > 1: |
|
raise ValueError("Mask should be in [0, 1] range") |
|
|
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
|
|
|
|
image = image.to(dtype=torch.float32) |
|
elif isinstance(mask, torch.Tensor): |
|
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") |
|
else: |
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)): |
|
image = [image] |
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): |
|
|
|
image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
|
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
|
|
if isinstance(mask, (PIL.Image.Image, np.ndarray)): |
|
mask = [mask] |
|
|
|
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): |
|
mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] |
|
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) |
|
mask = mask.astype(np.float32) / 255.0 |
|
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): |
|
mask = np.concatenate([m[None, None, :] for m in mask], axis=0) |
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
masked_image = image * (mask < 0.5) |
|
|
|
|
|
if return_image: |
|
return mask, masked_image, image |
|
|
|
return mask, masked_image |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class StableDiffusionInpaintPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
TextualInversionLoaderMixin, |
|
IPAdapterMixin, |
|
LoraLoaderMixin, |
|
FromSingleFileMixin, |
|
): |
|
r""" |
|
Pipeline for text-guided image inpainting using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
|
|
Args: |
|
vae ([`AutoencoderKL`, `AsymmetricAutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
tokenizer ([`~transformers.CLIPTokenizer`]): |
|
A `CLIPTokenizer` to tokenize text. |
|
unet ([`UNet2DConditionModel`]): |
|
A `UNet2DConditionModel` to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details |
|
about a model's potential harms. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" |
|
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "mask", "masked_image_latents"] |
|
|
|
def __init__( |
|
self, |
|
vae: Union[AutoencoderKL, AsymmetricAutoencoderKL], |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
image_encoder: CLIPVisionModelWithProjection = None, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration" |
|
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" |
|
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" |
|
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" |
|
" Hub, it would be very nice if you could open a Pull request for the" |
|
" `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["skip_prk_steps"] = True |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
|
|
if unet.config.in_channels != 9: |
|
logger.info(f"You have loaded a UNet with {unet.config.in_channels} input channels which.") |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
**kwargs, |
|
): |
|
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." |
|
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
prompt_embeds_tuple = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=lora_scale, |
|
**kwargs, |
|
) |
|
|
|
|
|
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
lora_scale (`float`, *optional*): |
|
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
""" |
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
if clip_skip is None: |
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) |
|
prompt_embeds = prompt_embeds[0] |
|
else: |
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True |
|
) |
|
|
|
|
|
|
|
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] |
|
|
|
|
|
|
|
|
|
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) |
|
|
|
if self.text_encoder is not None: |
|
prompt_embeds_dtype = self.text_encoder.dtype |
|
elif self.unet is not None: |
|
prompt_embeds_dtype = self.unet.dtype |
|
else: |
|
prompt_embeds_dtype = prompt_embeds.dtype |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self.text_encoder, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_ip_adapter_image_embeds( |
|
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance |
|
): |
|
if ip_adapter_image_embeds is None: |
|
if not isinstance(ip_adapter_image, list): |
|
ip_adapter_image = [ip_adapter_image] |
|
|
|
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): |
|
raise ValueError( |
|
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." |
|
) |
|
|
|
image_embeds = [] |
|
for single_ip_adapter_image, image_proj_layer in zip( |
|
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers |
|
): |
|
output_hidden_state = not isinstance(image_proj_layer, ImageProjection) |
|
single_image_embeds, single_negative_image_embeds = self.encode_image( |
|
single_ip_adapter_image, device, 1, output_hidden_state |
|
) |
|
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) |
|
single_negative_image_embeds = torch.stack( |
|
[single_negative_image_embeds] * num_images_per_prompt, dim=0 |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
single_image_embeds = single_image_embeds.to(device) |
|
|
|
image_embeds.append(single_image_embeds) |
|
else: |
|
repeat_dims = [1] |
|
image_embeds = [] |
|
for single_image_embeds in ip_adapter_image_embeds: |
|
if do_classifier_free_guidance: |
|
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
single_negative_image_embeds = single_negative_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) |
|
) |
|
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) |
|
else: |
|
single_image_embeds = single_image_embeds.repeat( |
|
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) |
|
) |
|
image_embeds.append(single_image_embeds) |
|
|
|
return image_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
image, |
|
mask_image, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
output_type, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
ip_adapter_image=None, |
|
ip_adapter_image_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
padding_mask_crop=None, |
|
): |
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if height % self.vae_scale_factor != 0 or width % self.vae_scale_factor != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if padding_mask_crop is not None: |
|
if not isinstance(image, PIL.Image.Image): |
|
raise ValueError( |
|
f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}." |
|
) |
|
if not isinstance(mask_image, PIL.Image.Image): |
|
raise ValueError( |
|
f"The mask image should be a PIL image when inpainting mask crop, but is of type" |
|
f" {type(mask_image)}." |
|
) |
|
if output_type != "pil": |
|
raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.") |
|
|
|
if ip_adapter_image is not None and ip_adapter_image_embeds is not None: |
|
raise ValueError( |
|
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." |
|
) |
|
|
|
if ip_adapter_image_embeds is not None: |
|
if not isinstance(ip_adapter_image_embeds, list): |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" |
|
) |
|
elif ip_adapter_image_embeds[0].ndim not in [3, 4]: |
|
raise ValueError( |
|
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" |
|
) |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
image=None, |
|
timestep=None, |
|
is_strength_max=True, |
|
return_noise=False, |
|
return_image_latents=False, |
|
): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if (image is None or timestep is None) and not is_strength_max: |
|
raise ValueError( |
|
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." |
|
"However, either the image or the noise timestep has not been provided." |
|
) |
|
|
|
if return_image_latents or (latents is None and not is_strength_max): |
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image |
|
else: |
|
image_latents = self._encode_vae_image(image=image, generator=generator) |
|
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) |
|
|
|
if latents is None: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents |
|
else: |
|
noise = latents.to(device) |
|
latents = noise * self.scheduler.init_noise_sigma |
|
|
|
outputs = (latents,) |
|
|
|
if return_noise: |
|
outputs += (noise,) |
|
|
|
if return_image_latents: |
|
outputs += (image_latents,) |
|
|
|
return outputs |
|
|
|
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): |
|
if isinstance(generator, list): |
|
image_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(image.shape[0]) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
image_latents = self.vae.config.scaling_factor * image_latents |
|
|
|
return image_latents |
|
|
|
def prepare_mask_latents( |
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
if masked_image.shape[1] == 4: |
|
masked_image_latents = masked_image |
|
else: |
|
masked_image_latents = self._encode_vae_image(masked_image, generator=generator) |
|
|
|
|
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
return mask, masked_image_latents |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def get_guidance_scale_embedding( |
|
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 |
|
) -> torch.FloatTensor: |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
w (`torch.Tensor`): |
|
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
Dimension of the embeddings to generate. |
|
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): |
|
Data type of the generated embeddings. |
|
|
|
Returns: |
|
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@property |
|
def pag_scale(self): |
|
return self._pag_scale |
|
|
|
@property |
|
def do_perturbed_attention_guidance(self): |
|
return self._pag_scale > 0 |
|
|
|
@property |
|
def pag_adaptive_scaling(self): |
|
return self._pag_adaptive_scaling |
|
|
|
@property |
|
def do_pag_adaptive_scaling(self): |
|
return self._pag_adaptive_scaling > 0 |
|
|
|
@property |
|
def pag_applied_layers_index(self): |
|
return self._pag_applied_layers_index |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
mask_image: PipelineImageInput = None, |
|
masked_image_latents: torch.FloatTensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
padding_mask_crop: Optional[int] = None, |
|
strength: float = 1.0, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.5, |
|
pag_scale: float = 0.0, |
|
pag_adaptive_scaling: float = 0.0, |
|
pag_applied_layers_index: List[str] = ["d4"], |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
clip_skip: int = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
The call function to the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to |
|
be masked out with `mask_image` and repainted according to `prompt`). For both numpy array and pytorch |
|
tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the |
|
expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a list of arrays, the |
|
expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image latents as `image`, but |
|
if passing latents directly it is not encoded again. |
|
mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask |
|
are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a |
|
single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one |
|
color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`, `(B, |
|
H, W)`, `(1, H, W)`, `(H, W)`. And for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, |
|
1)`, or `(H, W)`. |
|
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): |
|
The width in pixels of the generated image. |
|
padding_mask_crop (`int`, *optional*, defaults to `None`): |
|
The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to |
|
image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region |
|
with the same aspect ration of the image and contains all masked area, and then expand that area based |
|
on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before |
|
resizing to the original image size for inpainting. This is useful when the masked area is small while |
|
the image is large and contain information irrelevant for inpainting, such as background. |
|
strength (`float`, *optional*, defaults to 1.0): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends |
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising |
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 |
|
essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter is modulated by `strength`. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor is generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. |
|
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): |
|
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of |
|
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should |
|
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not |
|
provided, embeddings are computed from the `ip_adapter_image` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in |
|
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
Examples: |
|
|
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
|
|
>>> from diffusers import StableDiffusionInpaintPipeline |
|
|
|
|
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
>>> init_image = download_image(img_url).resize((512, 512)) |
|
>>> mask_image = download_image(mask_url).resize((512, 512)) |
|
|
|
>>> pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" |
|
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
image, |
|
mask_image, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
output_type, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
padding_mask_crop, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._interrupt = False |
|
|
|
self._pag_scale = pag_scale |
|
self._pag_adaptive_scaling = pag_adaptive_scaling |
|
self._pag_applied_layers_index = pag_applied_layers_index |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
self.do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
clip_skip=self.clip_skip, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds]) |
|
|
|
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds]) |
|
|
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: |
|
image_embeds = self.prepare_ip_adapter_image_embeds( |
|
ip_adapter_image, |
|
ip_adapter_image_embeds, |
|
device, |
|
batch_size * num_images_per_prompt |
|
) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps=num_inference_steps, strength=strength, device=device |
|
) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
|
|
if padding_mask_crop is not None: |
|
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop) |
|
resize_mode = "fill" |
|
else: |
|
crops_coords = None |
|
resize_mode = "default" |
|
|
|
original_image = image |
|
init_image = self.image_processor.preprocess( |
|
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode |
|
) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
latents_outputs = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
image=init_image, |
|
timestep=latent_timestep, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
) |
|
|
|
if return_image_latents: |
|
latents, noise, image_latents = latents_outputs |
|
else: |
|
latents, noise = latents_outputs |
|
|
|
|
|
mask_condition = self.mask_processor.preprocess( |
|
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords |
|
) |
|
|
|
if masked_image_latents is None: |
|
masked_image = init_image * (mask_condition < 0.5) |
|
else: |
|
masked_image = masked_image_latents |
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask_condition, |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = ( |
|
{"image_embeds": image_embeds} |
|
if ip_adapter_image is not None or ip_adapter_image_embeds is not None |
|
else None |
|
) |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
|
|
if self.do_perturbed_attention_guidance: |
|
down_layers = [] |
|
mid_layers = [] |
|
up_layers = [] |
|
for name, module in self.unet.named_modules(): |
|
if "attn1" in name and "to" not in name: |
|
layer_type = name.split(".")[0].split("_")[0] |
|
if layer_type == "down": |
|
down_layers.append(module) |
|
elif layer_type == "mid": |
|
mid_layers.append(module) |
|
elif layer_type == "up": |
|
up_layers.append(module) |
|
else: |
|
raise ValueError(f"Invalid layer type: {layer_type}") |
|
|
|
|
|
if self.do_perturbed_attention_guidance: |
|
if self.do_classifier_free_guidance: |
|
replace_processor = PAGCFGIdentitySelfAttnProcessor() |
|
else: |
|
replace_processor = PAGIdentitySelfAttnProcessor() |
|
|
|
drop_layers = self.pag_applied_layers_index |
|
for drop_layer in drop_layers: |
|
try: |
|
if drop_layer[0] == "d": |
|
down_layers[int(drop_layer[1])].processor = replace_processor |
|
elif drop_layer[0] == "m": |
|
mid_layers[int(drop_layer[1])].processor = replace_processor |
|
elif drop_layer[0] == "u": |
|
up_layers[int(drop_layer[1])].processor = replace_processor |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." |
|
) |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: |
|
latent_model_input = torch.cat([latents] * 2) |
|
mask_input = torch.cat([mask] * 2) |
|
masked_image_latents_input = torch.cat([masked_image_latents] * 2) |
|
|
|
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
latent_model_input = torch.cat([latents] * 2) |
|
mask_input = torch.cat([mask] * 2) |
|
masked_image_latents_input = torch.cat([masked_image_latents] * 2) |
|
|
|
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
latent_model_input = torch.cat([latents] * 3) |
|
mask_input = torch.cat([mask] * 3) |
|
masked_image_latents_input = torch.cat([masked_image_latents] * 3) |
|
|
|
else: |
|
latent_model_input = latents |
|
mask_input = mask |
|
masked_image_latents_input = masked_image_latents |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if num_channels_unet == 9: |
|
|
|
latent_model_input = torch.cat([latent_model_input, mask_input, masked_image_latents_input], dim=1) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
|
|
|
|
if self.do_classifier_free_guidance and not self.do_perturbed_attention_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
|
|
delta = noise_pred_text - noise_pred_uncond |
|
noise_pred = noise_pred_uncond + self.guidance_scale * delta |
|
|
|
|
|
elif not self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2) |
|
|
|
signal_scale = self.pag_scale |
|
if self.do_pag_adaptive_scaling: |
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t) |
|
if signal_scale < 0: |
|
signal_scale = 0 |
|
|
|
noise_pred = noise_pred_original + signal_scale * (noise_pred_original - noise_pred_perturb) |
|
|
|
|
|
elif self.do_classifier_free_guidance and self.do_perturbed_attention_guidance: |
|
noise_pred_uncond, noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(3) |
|
|
|
signal_scale = self.pag_scale |
|
if self.do_pag_adaptive_scaling: |
|
signal_scale = self.pag_scale - self.pag_adaptive_scaling * (1000 - t) |
|
if signal_scale < 0: |
|
signal_scale = 0 |
|
|
|
noise_pred = ( |
|
noise_pred_text |
|
+ (self.guidance_scale - 1.0) * (noise_pred_text - noise_pred_uncond) |
|
+ signal_scale * (noise_pred_text - noise_pred_text_perturb) |
|
) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
if num_channels_unet == 4: |
|
init_latents_proper = image_latents |
|
if self.do_classifier_free_guidance: |
|
init_mask, _ = mask.chunk(2) |
|
else: |
|
init_mask = mask |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
mask = callback_outputs.pop("mask", mask) |
|
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
condition_kwargs = {} |
|
if isinstance(self.vae, AsymmetricAutoencoderKL): |
|
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) |
|
init_image_condition = init_image.clone() |
|
init_image = self._encode_vae_image(init_image, generator=generator) |
|
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) |
|
condition_kwargs = {"image": init_image_condition, "mask": mask_condition} |
|
image = self.vae.decode( |
|
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs |
|
)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
if padding_mask_crop is not None: |
|
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image] |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
|
|
if self.do_perturbed_attention_guidance: |
|
drop_layers = self.pag_applied_layers_index |
|
for drop_layer in drop_layers: |
|
try: |
|
if drop_layer[0] == "d": |
|
down_layers[int(drop_layer[1])].processor = AttnProcessor2_0() |
|
elif drop_layer[0] == "m": |
|
mid_layers[int(drop_layer[1])].processor = AttnProcessor2_0() |
|
elif drop_layer[0] == "u": |
|
up_layers[int(drop_layer[1])].processor = AttnProcessor2_0() |
|
else: |
|
raise ValueError(f"Invalid layer type: {drop_layer[0]}") |
|
except IndexError: |
|
raise ValueError( |
|
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers." |
|
) |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|