|
import math
|
|
import torch
|
|
from torch.utils.data import Sampler
|
|
import torch.distributed as dist
|
|
|
|
|
|
class DistributedEvalSampler(Sampler):
|
|
r"""
|
|
DistributedEvalSampler is different from DistributedSampler.
|
|
It does NOT add extra samples to make it evenly divisible.
|
|
DistributedEvalSampler should NOT be used for training. The distributed processes could hang forever.
|
|
See this issue for details: https://github.com/pytorch/pytorch/issues/22584
|
|
shuffle is disabled by default
|
|
|
|
DistributedEvalSampler is for evaluation purpose where synchronization does not happen every epoch.
|
|
Synchronization should be done outside the dataloader loop.
|
|
|
|
Sampler that restricts data loading to a subset of the dataset.
|
|
|
|
It is especially useful in conjunction with
|
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such a case, each
|
|
process can pass a :class`~torch.utils.data.DistributedSampler` instance as a
|
|
:class:`~torch.utils.data.DataLoader` sampler, and load a subset of the
|
|
original dataset that is exclusive to it.
|
|
|
|
.. note::
|
|
Dataset is assumed to be of constant size.
|
|
|
|
Arguments:
|
|
dataset: Dataset used for sampling.
|
|
num_replicas (int, optional): Number of processes participating in
|
|
distributed training. By default, :attr:`rank` is retrieved from the
|
|
current distributed group.
|
|
rank (int, optional): Rank of the current process within :attr:`num_replicas`.
|
|
By default, :attr:`rank` is retrieved from the current distributed
|
|
group.
|
|
shuffle (bool, optional): If ``True`` (default), sampler will shuffle the
|
|
indices.
|
|
seed (int, optional): random seed used to shuffle the sampler if
|
|
:attr:`shuffle=True`. This number should be identical across all
|
|
processes in the distributed group. Default: ``0``.
|
|
|
|
.. warning::
|
|
In distributed mode, calling the :meth`set_epoch(epoch) <set_epoch>` method at
|
|
the beginning of each epoch **before** creating the :class:`DataLoader` iterator
|
|
is necessary to make shuffling work properly across multiple epochs. Otherwise,
|
|
the same ordering will be always used.
|
|
|
|
Example::
|
|
|
|
>>> sampler = DistributedSampler(dataset) if is_distributed else None
|
|
>>> loader = DataLoader(dataset, shuffle=(sampler is None),
|
|
... sampler=sampler)
|
|
>>> for epoch in range(start_epoch, n_epochs):
|
|
... if is_distributed:
|
|
... sampler.set_epoch(epoch)
|
|
... train(loader)
|
|
"""
|
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=False, seed=0):
|
|
if num_replicas is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = dist.get_world_size()
|
|
if rank is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = dist.get_rank()
|
|
self.dataset = dataset
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.epoch = 0
|
|
|
|
|
|
self.total_size = len(self.dataset)
|
|
indices = list(range(self.total_size))
|
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
|
self.num_samples = len(indices)
|
|
|
|
self.shuffle = shuffle
|
|
self.seed = seed
|
|
|
|
def __iter__(self):
|
|
if self.shuffle:
|
|
|
|
g = torch.Generator()
|
|
g.manual_seed(self.seed + self.epoch)
|
|
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
|
else:
|
|
indices = list(range(len(self.dataset)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
indices = indices[self.rank:self.total_size:self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
return iter(indices)
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def set_epoch(self, epoch):
|
|
r"""
|
|
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
|
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
|
sampler will yield the same ordering.
|
|
|
|
Arguments:
|
|
epoch (int): _epoch number.
|
|
"""
|
|
self.epoch = epoch
|
|
|