hyliu's picture
Upload folder using huggingface_hub
e98653e verified
import random
import numpy as np
from skimage.color import rgb2hsv, hsv2rgb
# from skimage.transform import pyramid_gaussian
import torch
def _apply(func, x):
if isinstance(x, (list, tuple)):
return [_apply(func, x_i) for x_i in x]
elif isinstance(x, dict):
y = {}
for key, value in x.items():
y[key] = _apply(func, value)
return y
else:
return func(x)
def crop(*args, ps=256): # patch_size
# args = [input, target]
def _get_shape(*args):
if isinstance(args[0], (list, tuple)):
return _get_shape(args[0][0])
elif isinstance(args[0], dict):
return _get_shape(list(args[0].values())[0])
else:
return args[0].shape
h, w, _ = _get_shape(args)
py = random.randrange(0, h-ps+1)
px = random.randrange(0, w-ps+1)
def _crop(img):
if img.ndim == 2:
return img[py:py+ps, px:px+ps, np.newaxis]
else:
return img[py:py+ps, px:px+ps, :]
return _apply(_crop, args)
def add_noise(*args, sigma_sigma=2, rgb_range=255):
if len(args) == 1: # usually there is only a single input
args = args[0]
sigma = np.random.normal() * sigma_sigma * rgb_range/255
def _add_noise(img):
noise = np.random.randn(*img.shape).astype(np.float32) * sigma
return (img + noise).clip(0, rgb_range)
return _apply(_add_noise, args)
def augment(*args, hflip=True, rot=True, shuffle=True, change_saturation=True, rgb_range=255):
"""augmentation consistent to input and target"""
choices = (False, True)
hflip = hflip and random.choice(choices)
vflip = rot and random.choice(choices)
rot90 = rot and random.choice(choices)
# shuffle = shuffle
if shuffle:
rgb_order = list(range(3))
random.shuffle(rgb_order)
if rgb_order == list(range(3)):
shuffle = False
if change_saturation:
amp_factor = np.random.uniform(0.5, 1.5)
def _augment(img):
if hflip: img = img[:, ::-1, :]
if vflip: img = img[::-1, :, :]
if rot90: img = img.transpose(1, 0, 2)
if shuffle and img.ndim > 2:
if img.shape[-1] == 3: # RGB image only
img = img[..., rgb_order]
if change_saturation:
hsv_img = rgb2hsv(img)
hsv_img[..., 1] *= amp_factor
img = hsv2rgb(hsv_img).clip(0, 1) * rgb_range
return img.astype(np.float32)
return _apply(_augment, args)
def pad(img, divisor=4, pad_width=None, negative=False):
def _pad_numpy(img, divisor=4, pad_width=None, negative=False):
if pad_width is None:
(h, w, _) = img.shape
pad_h = -h % divisor
pad_w = -w % divisor
pad_width = ((0, pad_h), (0, pad_w), (0, 0))
img = np.pad(img, pad_width, mode='edge')
return img, pad_width
def _pad_tensor(img, divisor=4, pad_width=None, negative=False):
n, c, h, w = img.shape
if pad_width is None:
pad_h = -h % divisor
pad_w = -w % divisor
pad_width = (0, pad_w, 0, pad_h)
else:
try:
pad_h = pad_width[0][1]
pad_w = pad_width[1][1]
if isinstance(pad_h, torch.Tensor):
pad_h = pad_h.item()
if isinstance(pad_w, torch.Tensor):
pad_w = pad_w.item()
pad_width = (0, pad_w, 0, pad_h)
except:
pass
if negative:
pad_width = [-val for val in pad_width]
img = torch.nn.functional.pad(img, pad_width, 'reflect')
return img, pad_width
if isinstance(img, np.ndarray):
return _pad_numpy(img, divisor, pad_width, negative)
else: # torch.Tensor
return _pad_tensor(img, divisor, pad_width, negative)
def generate_pyramid(*args, n_scales):
def _generate_pyramid(img):
if img.dtype != np.float32:
img = img.astype(np.float32)
# pyramid = list(pyramid_gaussian(img, n_scales-1, multichannel=True))
# bypass pyramid, deliver the image as is
pyramid = [img]
return pyramid
return _apply(_generate_pyramid, args)
def np2tensor(*args, rgb_range=255):
def _np2tensor(x):
np_transpose = np.ascontiguousarray(x.transpose(2, 0, 1))
tensor = torch.from_numpy(np_transpose).float()
tensor.mul_(rgb_range / 255)
return tensor
return _apply(_np2tensor, args)
def to(*args, device=None, dtype=torch.float):
def _to(x):
return x.to(device=device, dtype=dtype, non_blocking=True, copy=False)
return _apply(_to, args)