|
import torch.nn as nn
|
|
|
|
class Discriminator(nn.Module):
|
|
def __init__(self, args):
|
|
super(Discriminator, self).__init__()
|
|
|
|
|
|
n_feats = args.n_feats
|
|
kernel_size = args.kernel_size
|
|
|
|
def conv(kernel_size, in_channel, n_feats, stride, pad=None):
|
|
if pad is None:
|
|
pad = (kernel_size-1)//2
|
|
|
|
return nn.Conv2d(in_channel, n_feats, kernel_size, stride=stride, padding=pad, bias=False)
|
|
|
|
self.conv_layers = nn.ModuleList([
|
|
conv(kernel_size, 3, n_feats//2, 1),
|
|
conv(kernel_size, n_feats//2, n_feats//2, 2),
|
|
conv(kernel_size, n_feats//2, n_feats, 1),
|
|
conv(kernel_size, n_feats, n_feats, 2),
|
|
conv(kernel_size, n_feats, n_feats*2, 1),
|
|
conv(kernel_size, n_feats*2, n_feats*2, 4),
|
|
conv(kernel_size, n_feats*2, n_feats*4, 1),
|
|
conv(kernel_size, n_feats*4, n_feats*4, 4),
|
|
conv(kernel_size, n_feats*4, n_feats*8, 1),
|
|
conv(4, n_feats*8, n_feats*8, 4, 0),
|
|
])
|
|
|
|
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
self.dense = nn.Conv2d(n_feats*8, 1, 1, bias=False)
|
|
|
|
def forward(self, x):
|
|
|
|
for layer in self.conv_layers:
|
|
x = self.act(layer(x))
|
|
|
|
x = self.dense(x)
|
|
|
|
return x
|
|
|
|
|