import math | |
from bisect import bisect_right | |
from torch.optim.lr_scheduler import _LRScheduler | |
# MultiStep learning rate scheduler with warm restart | |
class WarmMultiStepLR(_LRScheduler): | |
def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1, scale=1): | |
if not list(milestones) == sorted(milestones): | |
raise ValueError( | |
'Milestones should be a list of increasing integers. Got {}', | |
milestones | |
) | |
self.milestones = milestones | |
self.gamma = gamma | |
self.scale = scale | |
self.warmup_epochs = 5 | |
self.gradual = (self.scale - 1) / self.warmup_epochs | |
super(WarmMultiStepLR, self).__init__(optimizer, last_epoch) | |
def get_lr(self): | |
if self.last_epoch < self.warmup_epochs: | |
return [ | |
base_lr * (1 + self.last_epoch * self.gradual) / self.scale | |
for base_lr in self.base_lrs | |
] | |
else: | |
return [ | |
base_lr * self.gamma ** bisect_right(self.milestones, self.last_epoch) | |
for base_lr in self.base_lrs | |
] | |