hyliu's picture
Upload folder using huggingface_hub
8cb1339 verified
from model import common
from model import attention
import torch.nn as nn
def make_model(args, parent=False):
return PANET(args)
class PANET(nn.Module):
def __init__(self, args, conv=common.default_conv):
super(PANET, self).__init__()
n_resblocks = args.n_resblocks
n_feats = args.n_feats
kernel_size = 3
scale = args.scale[0]
rgb_mean = (0.4488, 0.4371, 0.4040)
rgb_std = (1.0, 1.0, 1.0)
self.sub_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std)
msa = attention.PyramidAttention()
# define head module
m_head = [conv(args.n_colors, n_feats, kernel_size)]
# define body module
m_body = [
common.ResBlock(
conv, n_feats, kernel_size, nn.PReLU(), res_scale=args.res_scale
) for _ in range(n_resblocks//2)
]
m_body.append(msa)
for i in range(n_resblocks//2):
m_body.append(common.ResBlock(conv,n_feats,kernel_size,nn.PReLU(),res_scale=args.res_scale))
m_body.append(conv(n_feats, n_feats, kernel_size))
# define tail module
#m_tail = [
# common.Upsampler(conv, scale, n_feats, act=False),
# conv(n_feats, args.n_colors, kernel_size)
#]
m_tail = [
conv(n_feats, args.n_colors, kernel_size)
]
self.add_mean = common.MeanShift(args.rgb_range, rgb_mean, rgb_std, 1)
self.head = nn.Sequential(*m_head)
self.body = nn.Sequential(*m_body)
self.tail = nn.Sequential(*m_tail)
def forward(self, x):
#x = self.sub_mean(x)
x = self.head(x)
res = self.body(x)
res += x
x = self.tail(res)
#x = self.add_mean(x)
return x
def load_state_dict(self, state_dict, strict=True):
own_state = self.state_dict()
for name, param in state_dict.items():
if name in own_state:
if isinstance(param, nn.Parameter):
param = param.data
try:
own_state[name].copy_(param)
except Exception:
if name.find('tail') == -1:
raise RuntimeError('While copying the parameter named {}, '
'whose dimensions in the model are {} and '
'whose dimensions in the checkpoint are {}.'
.format(name, own_state[name].size(), param.size()))
elif strict:
if name.find('tail') == -1:
raise KeyError('unexpected key "{}" in state_dict'
.format(name))