hyliu's picture
Upload folder using huggingface_hub
8cb1339 verified
import os
import glob
import random
import pickle
from data import common
import numpy as np
import imageio
import torch
import torch.utils.data as data
class SRData(data.Dataset):
def __init__(self, args, name='', train=True, benchmark=False):
self.args = args
self.name = name
self.train = train
self.split = 'train' if train else 'test'
self.do_eval = True
self.benchmark = benchmark
self.input_large = (args.model == 'VDSR')
self.scale = args.scale
self.idx_scale = 0
self._set_filesystem(args.dir_data)
if args.ext.find('img') < 0:
path_bin = os.path.join(self.apath, 'bin')
os.makedirs(path_bin, exist_ok=True)
list_hr, list_lr = self._scan()
if args.ext.find('img') >= 0 or benchmark:
self.images_hr, self.images_lr = list_hr, list_lr
elif args.ext.find('sep') >= 0:
os.makedirs(
self.dir_hr.replace(self.apath, path_bin),
exist_ok=True
)
for s in self.scale:
os.makedirs(
os.path.join(
self.dir_lr.replace(self.apath, path_bin),
'X{}'.format(s)
),
exist_ok=True
)
self.images_hr, self.images_lr = [], [[] for _ in self.scale]
for h in list_hr:
b = h.replace(self.apath, path_bin)
b = b.replace(self.ext[0], '.pt')
self.images_hr.append(b)
self._check_and_load(args.ext, h, b, verbose=True)
for i, ll in enumerate(list_lr):
for l in ll:
b = l.replace(self.apath, path_bin)
b = b.replace(self.ext[1], '.pt')
self.images_lr[i].append(b)
self._check_and_load(args.ext, l, b, verbose=True)
if train:
n_patches = args.batch_size * args.test_every
n_images = len(args.data_train) * len(self.images_hr)
if n_images == 0:
self.repeat = 0
else:
self.repeat = max(n_patches // n_images, 1)
# Below functions as used to prepare images
def _scan(self):
names_hr = sorted(
glob.glob(os.path.join(self.dir_hr, '*' + self.ext[0]))
)
names_lr = [[] for _ in self.scale]
for f in names_hr:
filename, _ = os.path.splitext(os.path.basename(f))
for si, s in enumerate(self.scale):
names_lr[si].append(os.path.join(
self.dir_lr, 'X{}/{}x{}{}'.format(
s, filename, s, self.ext[1]
)
))
return names_hr, names_lr
def _set_filesystem(self, dir_data):
self.apath = os.path.join(dir_data, self.name)
self.dir_hr = os.path.join(self.apath, 'HR')
self.dir_lr = os.path.join(self.apath, 'LR_bicubic')
if self.input_large: self.dir_lr += 'L'
self.ext = ('.png', '.png')
def _check_and_load(self, ext, img, f, verbose=True):
if not os.path.isfile(f) or ext.find('reset') >= 0:
if verbose:
print('Making a binary: {}'.format(f))
with open(f, 'wb') as _f:
pickle.dump(imageio.imread(img), _f)
def __getitem__(self, idx):
lr, hr, filename = self._load_file(idx)
pair = self.get_patch(lr, hr)
pair = common.set_channel(*pair, n_channels=self.args.n_colors)
pair_t = common.np2Tensor(*pair, rgb_range=self.args.rgb_range)
return pair_t[0], pair_t[1], filename
def __len__(self):
if self.train:
return len(self.images_hr) * self.repeat
else:
return len(self.images_hr)
def _get_index(self, idx):
if self.train:
return idx % len(self.images_hr)
else:
return idx
def _load_file(self, idx):
idx = self._get_index(idx)
f_hr = self.images_hr[idx]
f_lr = self.images_lr[self.idx_scale][idx]
filename, _ = os.path.splitext(os.path.basename(f_hr))
if self.args.ext == 'img' or self.benchmark:
hr = imageio.imread(f_hr)
lr = imageio.imread(f_lr)
elif self.args.ext.find('sep') >= 0:
with open(f_hr, 'rb') as _f:
hr = pickle.load(_f)
with open(f_lr, 'rb') as _f:
lr = pickle.load(_f)
return lr, hr, filename
def get_patch(self, lr, hr):
scale = self.scale[self.idx_scale]
if self.train:
lr, hr = common.get_patch(
lr, hr,
patch_size=self.args.patch_size,
scale=scale,
multi=(len(self.scale) > 1),
input_large=self.input_large
)
if not self.args.no_augment: lr, hr = common.augment(lr, hr)
else:
ih, iw = lr.shape[:2]
hr = hr[0:ih * scale, 0:iw * scale]
return lr, hr
def set_scale(self, idx_scale):
if not self.input_large:
self.idx_scale = idx_scale
else:
self.idx_scale = random.randint(0, len(self.scale) - 1)