|
import random
|
|
|
|
import numpy as np
|
|
import skimage.color as sc
|
|
|
|
import torch
|
|
|
|
def get_patch(*args, patch_size=96, scale=1, multi=False, input_large=False):
|
|
ih, iw = args[0].shape[:2]
|
|
|
|
if not input_large:
|
|
p = 1 if multi else 1
|
|
tp = p * patch_size
|
|
ip = tp // 1
|
|
else:
|
|
tp = patch_size
|
|
ip = patch_size
|
|
|
|
ix = random.randrange(0, iw - ip + 1)
|
|
iy = random.randrange(0, ih - ip + 1)
|
|
|
|
if not input_large:
|
|
tx, ty = 1 * ix, 1 * iy
|
|
else:
|
|
tx, ty = ix, iy
|
|
|
|
ret = [
|
|
args[0][iy:iy + ip, ix:ix + ip, :],
|
|
*[a[ty:ty + tp, tx:tx + tp, :] for a in args[1:]]
|
|
]
|
|
|
|
return ret
|
|
|
|
def set_channel(*args, n_channels=3):
|
|
def _set_channel(img):
|
|
if img.ndim == 2:
|
|
img = np.expand_dims(img, axis=2)
|
|
|
|
c = img.shape[2]
|
|
if n_channels == 1 and c == 3:
|
|
img = np.expand_dims(sc.rgb2ycbcr(img)[:, :, 0], 2)
|
|
elif n_channels == 3 and c == 1:
|
|
img = np.concatenate([img] * n_channels, 2)
|
|
|
|
return img
|
|
|
|
return [_set_channel(a) for a in args]
|
|
|
|
def np2Tensor(*args, rgb_range=255):
|
|
def _np2Tensor(img):
|
|
np_transpose = np.ascontiguousarray(img.transpose((2, 0, 1)))
|
|
tensor = torch.from_numpy(np_transpose).float()
|
|
tensor.mul_(rgb_range / 255)
|
|
|
|
return tensor
|
|
|
|
return [_np2Tensor(a) for a in args]
|
|
|
|
def augment(*args, hflip=True, rot=True):
|
|
hflip = hflip and random.random() < 0.5
|
|
vflip = rot and random.random() < 0.5
|
|
rot90 = rot and random.random() < 0.5
|
|
|
|
def _augment(img):
|
|
if hflip: img = img[:, ::-1, :]
|
|
if vflip: img = img[::-1, :, :]
|
|
if rot90: img = img.transpose(1, 0, 2)
|
|
|
|
return img
|
|
|
|
return [_augment(a) for a in args]
|
|
|
|
|