lambdanet / DN_RGB /code /.ipynb_checkpoints /train-1rec-raft-s-gpu1-res-checkpoint.sh
hyliu's picture
Upload folder using huggingface_hub
2541ce6 verified
#!/bin/bash
bash ./prepare.sh
lst=0
for i in {0..3};
do
if nvidia-smi -i $i | grep -q "python"; then
:
else
lst=$i
break
fi
done
# CUDA_VISIBLE_DEVICES=$lst python main.py --n_GPUs 1 --lr 1e-4 --decay 200-400-600-800 --epoch 1000 --batch_size 16 --n_resblocks 10 --save_models \
# --model RAFTNETS --scale 1 --patch_size 48 --save RAFTS_DEMOSAIC20_R4 --n_feats 64 --data_train DIV2K --recurrence 4 --data_range "1-800/901-942"
# python main.py --model LAMBDANET --n_resblocks 20 --recurrence 1 --save_results --n_GPUs 1 --chop --data_test McM+Kodak24+CBSD68+Urban100 --scale 1 \
# --pre_train ../experiment/LAMBDA_DEMOSAIC20_R1/model/model_best.pt --test_only
CUDA_VISIBLE_DEVICES=$lst python main.py --n_GPUs 1 --lr 1e-4 --batch_size 16 --n_resblocks 20 --save_models \
--epoch 1000 --decay 200-400-600-800 --model RESNET --scale 50 --patch_size 48 \
--save RAFTS_RES --n_feats 64 --data_train DIV2K --recurrence 1 \
--load RAFTS_RES --resume -1