|
import argparse
|
|
import template
|
|
|
|
parser = argparse.ArgumentParser(description='EDSR and MDSR')
|
|
|
|
parser.add_argument('--debug', action='store_true',
|
|
help='Enables debug mode')
|
|
parser.add_argument('--template', default='.',
|
|
help='You can set various templates in option.py')
|
|
|
|
|
|
parser.add_argument('--n_threads', type=int, default=18,
|
|
help='number of threads for data loading')
|
|
parser.add_argument('--cpu', action='store_true',
|
|
help='use cpu only')
|
|
parser.add_argument('--n_GPUs', type=int, default=1,
|
|
help='number of GPUs')
|
|
parser.add_argument('--seed', type=int, default=1,
|
|
help='random seed')
|
|
|
|
|
|
parser.add_argument('--dir_data', type=str, default='/data/ssd/public/liuhy/CAR/dataset',help='dataset directory')
|
|
parser.add_argument('--data_train', type=str, default='DIV2K',
|
|
help='train dataset name')
|
|
parser.add_argument('--data_test', type=str, default='DIV2K',
|
|
help='test dataset name')
|
|
parser.add_argument('--data_range', type=str, default='1-800/801-834',
|
|
help='train/test data range')
|
|
parser.add_argument('--ext', type=str, default='sep',
|
|
help='dataset file extension')
|
|
parser.add_argument('--scale', type=str, default='4',
|
|
help='super resolution scale')
|
|
parser.add_argument('--patch_size', type=int, default=192,
|
|
help='output patch size')
|
|
parser.add_argument('--rgb_range', type=int, default=1,
|
|
help='maximum value of RGB')
|
|
parser.add_argument('--n_colors', type=int, default=1,
|
|
help='number of color channels to use')
|
|
parser.add_argument('--chop', action='store_true',
|
|
help='enable memory-efficient forward')
|
|
parser.add_argument('--no_augment', action='store_true',
|
|
help='do not use data augmentation')
|
|
|
|
|
|
parser.add_argument('--model', default='LAMBDANET',
|
|
help='model name')
|
|
|
|
parser.add_argument('--act', type=str, default='relu',
|
|
help='activation function')
|
|
parser.add_argument('--pre_train', type=str, default='.',
|
|
help='pre-trained model directory')
|
|
parser.add_argument('--extend', type=str, default='.',
|
|
help='pre-trained model directory')
|
|
parser.add_argument('--n_resblocks', type=int, default=16,
|
|
help='number of residual blocks')
|
|
parser.add_argument('--recurrence', type=int, default=1,
|
|
help='number of recurrence')
|
|
parser.add_argument('--n_feats', type=int, default=64,
|
|
help='number of feature maps')
|
|
parser.add_argument('--res_scale', type=float, default=1,
|
|
help='residual scaling')
|
|
parser.add_argument('--shift_mean', default=True,
|
|
help='subtract pixel mean from the input')
|
|
parser.add_argument('--amp', action='store_true',
|
|
help='subtract pixel mean from the input')
|
|
parser.add_argument('--detach', action='store_true',
|
|
help='subtract pixel mean from the input')
|
|
parser.add_argument('--step_detach', action='store_true',
|
|
help='subtract pixel mean from the input')
|
|
parser.add_argument('--dilation', action='store_true',
|
|
help='use dilated convolution')
|
|
parser.add_argument('--precision', type=str, default='single',
|
|
choices=('single', 'half'),
|
|
help='FP precision for test (single | half)')
|
|
parser.add_argument('--normalization', type=str, default='batch')
|
|
|
|
|
|
parser.add_argument('--G0', type=int, default=64,
|
|
help='default number of filters. (Use in RDN)')
|
|
parser.add_argument('--RDNkSize', type=int, default=3,
|
|
help='default kernel size. (Use in RDN)')
|
|
parser.add_argument('--RDNconfig', type=str, default='B',
|
|
help='parameters config of RDN. (Use in RDN)')
|
|
|
|
parser.add_argument('--depth', type=int, default=12,
|
|
help='number of residual groups')
|
|
|
|
parser.add_argument('--n_resgroups', type=int, default=10,
|
|
help='number of residual groups')
|
|
parser.add_argument('--reduction', type=int, default=16,
|
|
help='number of feature maps reduction')
|
|
|
|
|
|
parser.add_argument('--reset', action='store_true',
|
|
help='reset the training')
|
|
parser.add_argument('--test_every', type=int, default=1000,
|
|
help='do test per every N batches')
|
|
parser.add_argument('--epochs', type=int, default=1000,
|
|
help='number of epochs to train')
|
|
parser.add_argument('--batch_size', type=int, default=16,
|
|
help='input batch size for training')
|
|
parser.add_argument('--split_batch', type=int, default=1,
|
|
help='split the batch into smaller chunks')
|
|
parser.add_argument('--self_ensemble', action='store_true',
|
|
help='use self-ensemble method for test')
|
|
parser.add_argument('--test_only', action='store_true',
|
|
help='set this option to test the model')
|
|
parser.add_argument('--gan_k', type=int, default=1,
|
|
help='k value for adversarial loss')
|
|
|
|
|
|
parser.add_argument('--lr', type=float, default=1e-4,
|
|
help='learning rate')
|
|
parser.add_argument('--decay', type=str, default='200-400-600-800',
|
|
help='learning rate decay type')
|
|
parser.add_argument('--gamma', type=float, default=0.5,
|
|
help='learning rate decay factor for step decay')
|
|
parser.add_argument('--optimizer', default='ADAM',
|
|
choices=('SGD', 'ADAM', 'RMSprop', "ADAMW"),
|
|
help='optimizer to use (SGD | ADAM | RMSprop)')
|
|
parser.add_argument('--momentum', type=float, default=0.9,
|
|
help='SGD momentum')
|
|
parser.add_argument('--betas', type=tuple, default=(0.9, 0.999),
|
|
help='ADAM beta')
|
|
parser.add_argument('--epsilon', type=float, default=1e-8,
|
|
help='ADAM epsilon for numerical stability')
|
|
parser.add_argument('--weight_decay', type=float, default=0,
|
|
help='weight decay')
|
|
parser.add_argument('--gclip', type=float, default=0,
|
|
help='gradient clipping threshold (0 = no clipping)')
|
|
|
|
|
|
parser.add_argument('--loss', type=str, default='1*L1',
|
|
help='loss function configuration')
|
|
parser.add_argument('--skip_threshold', type=float, default='1e8',
|
|
help='skipping batch that has large error')
|
|
|
|
|
|
parser.add_argument('--save', type=str, default='test',
|
|
help='file name to save')
|
|
parser.add_argument('--load', type=str, default='',
|
|
help='file name to load')
|
|
parser.add_argument('--resume', type=int, default=0,
|
|
help='resume from specific checkpoint')
|
|
parser.add_argument('--save_models', action='store_true',
|
|
help='save all intermediate models')
|
|
parser.add_argument('--print_every', type=int, default=100,
|
|
help='how many batches to wait before logging training status')
|
|
parser.add_argument('--save_results', action='store_true',
|
|
help='save output results')
|
|
parser.add_argument('--save_gt', action='store_true',
|
|
help='save low-resolution and high-resolution images together')
|
|
|
|
args = parser.parse_args()
|
|
template.set_template(args)
|
|
|
|
args.scale = list(map(lambda x: int(x), args.scale.split('+')))
|
|
args.data_train = args.data_train.split('+')
|
|
args.data_test = args.data_test.split('+')
|
|
|
|
if args.epochs == 0:
|
|
args.epochs = 1e8
|
|
|
|
for arg in vars(args):
|
|
if vars(args)[arg] == 'True':
|
|
vars(args)[arg] = True
|
|
elif vars(args)[arg] == 'False':
|
|
vars(args)[arg] = False
|
|
|
|
|