hylee719's picture
undo last change
6e61b4b verified
from typing import Dict, List, Any
from scipy.special import softmax
import numpy as np
import weakref
import re
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
from utils import clean_str, clean_str_nopunct
import torch
from utils import MultiHeadModel, BertInputBuilder, get_num_words, MATH_PREFIXES, MATH_WORDS
import transformers
from transformers import BertTokenizer, BertForSequenceClassification
from transformers.utils import logging
transformers.logging.set_verbosity_debug()
UPTAKE_MODEL = 'ddemszky/uptake-model'
REASONING_MODEL = 'ddemszky/student-reasoning'
QUESTION_MODEL = 'ddemszky/question-detection'
FOCUSING_QUESTION_MODEL = 'ddemszky/focusing-questions'
class Utterance:
def __init__(self, speaker, text, uid=None,
transcript=None, starttime=None, endtime=None, **kwargs):
self.speaker = speaker
self.text = text
self.uid = uid
self.starttime = starttime
self.endtime = endtime
self.transcript = weakref.ref(transcript) if transcript else None
self.props = kwargs
self.role = None
self.word_count = self.get_num_words()
self.timestamp = [starttime, endtime]
if starttime is not None and endtime is not None:
self.unit_measure = endtime - starttime
else:
self.unit_measure = None
self.aggregate_unit_measure = endtime
self.num_math_terms = None
self.math_terms = None
# moments
self.uptake = None
self.reasoning = None
self.question = None
self.focusing_question = None
def get_clean_text(self, remove_punct=False):
if remove_punct:
return clean_str_nopunct(self.text)
return clean_str(self.text)
def get_num_words(self):
return get_num_words(self.text)
def to_dict(self):
return {
'speaker': self.speaker,
'text': self.text,
'uid': self.uid,
'starttime': self.starttime,
'endtime': self.endtime,
'uptake': self.uptake,
'reasoning': self.reasoning,
'question': self.question,
'focusingQuestion': self.focusing_question,
'numMathTerms': self.num_math_terms,
'mathTerms': self.math_terms,
**self.props
}
def to_talk_timeline_dict(self):
return{
'speaker': self.speaker,
'text': self.text,
'uid': self.uid,
'role': self.role,
'timestamp': self.timestamp,
'moments': {'reasoning': True if self.reasoning else False, 'questioning': True if self.question else False, 'uptake': True if self.uptake else False, 'focusingQuestion': True if self.focusing_question else False},
'unitMeasure': self.unit_measure,
'aggregateUnitMeasure': self.aggregate_unit_measure,
'wordCount': self.word_count,
'numMathTerms': self.num_math_terms,
'mathTerms': self.math_terms,
}
def __repr__(self):
return f"Utterance(speaker='{self.speaker}'," \
f"text='{self.text}', uid={self.uid}," \
f"starttime={self.starttime}, endtime={self.endtime}, props={self.props})"
class Transcript:
def __init__(self, **kwargs):
self.utterances = []
self.params = kwargs
def add_utterance(self, utterance):
utterance.transcript = weakref.ref(self)
self.utterances.append(utterance)
def get_idx(self, idx):
if idx >= len(self.utterances):
return None
return self.utterances[idx]
def get_uid(self, uid):
for utt in self.utterances:
if utt.uid == uid:
return utt
return None
def length(self):
return len(self.utterances)
def update_utterance_roles(self, uptake_speaker):
for utt in self.utterances:
if (utt.speaker == uptake_speaker):
utt.role = 'teacher'
else:
utt.role = 'student'
def get_talk_distribution_and_length(self, uptake_speaker):
if ((uptake_speaker is None)):
return None
teacher_words = 0
teacher_utt_count = 0
student_words = 0
student_utt_count = 0
for utt in self.utterances:
if (utt.speaker == uptake_speaker):
utt.role = 'teacher'
teacher_words += utt.get_num_words()
teacher_utt_count += 1
else:
utt.role = 'student'
student_words += utt.get_num_words()
student_utt_count += 1
if teacher_words + student_words > 0:
teacher_percentage = round(
(teacher_words / (teacher_words + student_words)) * 100)
student_percentage = 100 - teacher_percentage
else:
teacher_percentage = student_percentage = 0
avg_teacher_length = teacher_words / teacher_utt_count if teacher_utt_count > 0 else 0
avg_student_length = student_words / student_utt_count if student_utt_count > 0 else 0
return {'teacher': teacher_percentage, 'student': student_percentage}, {'teacher': avg_teacher_length, 'student': avg_student_length}
def get_word_clouds(self):
teacher_dict = {}
student_dict = {}
uptake_teacher_dict = {}
stop_words = stopwords.words('english')
for utt in self.utterances:
words = (utt.get_clean_text(remove_punct=True)).split(' ')
for word in words:
if word in stop_words or word in ['inaudible', 'crosstalk']: continue
# handle uptake case
if utt.role == 'teacher':
if utt.uptake == 1:
if word not in uptake_teacher_dict:
uptake_teacher_dict[word] = 0
uptake_teacher_dict[word] += 1
# ignore math words so they don't get tagged as general
if any(math_word in word for math_word in utt.math_terms): continue
if utt.role == 'teacher':
if word not in teacher_dict:
teacher_dict[word] = 0
teacher_dict[word] += 1
else:
if word not in student_dict:
student_dict[word] = 0
student_dict[word] += 1
dict_list = []
uptake_dict_list = []
teacher_dict_list = []
student_dict_list = []
for word in uptake_teacher_dict.keys():
uptake_dict_list.append({'text': word, 'value': uptake_teacher_dict[word], 'category': 'teacher'})
for word in teacher_dict.keys():
teacher_dict_list.append(
{'text': word, 'value': teacher_dict[word], 'category': 'general'})
dict_list.append({'text': word, 'value': teacher_dict[word], 'category': 'general'})
for word in student_dict.keys():
student_dict_list.append(
{'text': word, 'value': student_dict[word], 'category': 'general'})
dict_list.append({'text': word, 'value': student_dict[word], 'category': 'general'})
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
sorted_uptake_dict_list = sorted(uptake_dict_list, key=lambda x: x['value'], reverse=True)
sorted_teacher_dict_list = sorted(teacher_dict_list, key=lambda x: x['value'], reverse=True)
sorted_student_dict_list = sorted(student_dict_list, key=lambda x: x['value'], reverse=True)
return sorted_dict_list[:50], sorted_uptake_dict_list[:50], sorted_teacher_dict_list[:50], sorted_student_dict_list[:50]
def get_talk_timeline(self):
return [utterance.to_talk_timeline_dict() for utterance in self.utterances]
def calculate_aggregate_word_count(self):
unit_measures = [utt.unit_measure for utt in self.utterances]
if None in unit_measures:
aggregate_word_count = 0
for utt in self.utterances:
aggregate_word_count += utt.get_num_words()
utt.unit_measure = utt.get_num_words()
utt.aggregate_unit_measure = aggregate_word_count
def to_dict(self):
return {
'utterances': [utterance.to_dict() for utterance in self.utterances],
**self.params
}
def __repr__(self):
return f"Transcript(utterances={self.utterances}, custom_params={self.params})"
class QuestionModel:
def __init__(self, device, tokenizer, input_builder, max_length=300, path=QUESTION_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(
path, head2size={"is_question": 2})
self.model.to(self.device)
def run_inference(self, transcript):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if "?" in utt.text:
utt.question = 1
else:
text = utt.get_clean_text(remove_punct=True)
instance = self.input_builder.build_inputs([], text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
# print(output)
utt.question = np.argmax(
output["is_question_logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class ReasoningModel:
def __init__(self, device, tokenizer, input_builder, max_length=128, path=REASONING_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = BertForSequenceClassification.from_pretrained(path)
self.model.to(self.device)
def run_inference(self, transcript, min_num_words=8, uptake_speaker=None):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if utt.get_num_words() >= min_num_words and utt.speaker != uptake_speaker:
instance = self.input_builder.build_inputs([], utt.text,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.reasoning = np.argmax(output["logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"])
return output
class UptakeModel:
def __init__(self, device, tokenizer, input_builder, max_length=120, path=UPTAKE_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.max_length = max_length
self.model = MultiHeadModel.from_pretrained(path, head2size={"nsp": 2})
self.model.to(self.device)
def run_inference(self, transcript, min_prev_words, uptake_speaker=None):
self.model.eval()
prev_num_words = 0
prev_utt = None
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if ((uptake_speaker is None) or (utt.speaker == uptake_speaker)) and (prev_num_words >= min_prev_words):
textA = prev_utt.get_clean_text(remove_punct=False)
textB = utt.get_clean_text(remove_punct=False)
instance = self.input_builder.build_inputs([textA], textB,
max_length=self.max_length,
input_str=True)
output = self.get_prediction(instance)
utt.uptake = int(
softmax(output["nsp_logits"][0].tolist())[1] > .8)
prev_num_words = utt.get_num_words()
prev_utt = utt
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"],
return_pooler_output=False)
return output
class FocusingQuestionModel:
def __init__(self, device, tokenizer, input_builder, max_length=128, path=FOCUSING_QUESTION_MODEL):
print("Loading models...")
self.device = device
self.tokenizer = tokenizer
self.input_builder = input_builder
self.model = BertForSequenceClassification.from_pretrained(path)
self.model.to(self.device)
self.max_length = max_length
def run_inference(self, transcript, min_focusing_words=0, uptake_speaker=None):
self.model.eval()
with torch.no_grad():
for i, utt in enumerate(transcript.utterances):
if utt.speaker != uptake_speaker or uptake_speaker is None:
utt.focusing_question = None
continue
if utt.get_num_words() < min_focusing_words:
utt.focusing_question = None
continue
instance = self.input_builder.build_inputs([], utt.text, max_length=self.max_length, input_str=True)
output = self.get_prediction(instance)
utt.focusing_question = np.argmax(output["logits"][0].tolist())
def get_prediction(self, instance):
instance["attention_mask"] = [[1] * len(instance["input_ids"])]
for key in ["input_ids", "token_type_ids", "attention_mask"]:
instance[key] = torch.tensor(
instance[key]).unsqueeze(0) # Batch size = 1
instance[key].to(self.device)
output = self.model(input_ids=instance["input_ids"],
attention_mask=instance["attention_mask"],
token_type_ids=instance["token_type_ids"])
return output
def load_math_terms():
math_terms = []
math_terms_dict = {}
for term in MATH_WORDS:
if term in MATH_PREFIXES:
math_terms_dict[f"(^|[^a-zA-Z]){term}(s|es)?([^a-zA-Z]|$)"] = term
math_terms.append(f"(^|[^a-zA-Z]){term}(s|es)?([^a-zA-Z]|$)")
else:
math_terms.append(term)
math_terms_dict[term] = term
return math_terms, math_terms_dict
def run_math_density(transcript):
math_terms, math_terms_dict = load_math_terms()
sorted_terms = sorted(math_terms, key=len, reverse=True)
teacher_math_word_cloud = {}
student_math_word_cloud = {}
for i, utt in enumerate(transcript.utterances):
text = utt.get_clean_text(remove_punct=True)
num_matches = 0
matched_positions = set()
match_list = []
for term in sorted_terms:
matches = list(re.finditer(term, text, re.IGNORECASE))
# Filter out matches that share positions with longer terms
matches = [match for match in matches if not any(match.start() in range(existing[0], existing[1]) for existing in matched_positions)]
# matched_text = [match.group(0) for match in matches]
if len(matches) > 0:
if utt.role == "teacher":
if math_terms_dict[term] not in teacher_math_word_cloud:
teacher_math_word_cloud[math_terms_dict[term]] = 0
teacher_math_word_cloud[math_terms_dict[term]] += len(matches)
else:
if math_terms_dict[term] not in student_math_word_cloud:
student_math_word_cloud[math_terms_dict[term]] = 0
student_math_word_cloud[math_terms_dict[term]] += len(matches)
match_list.append(math_terms_dict[term])
# Update matched positions
matched_positions.update((match.start(), match.end()) for match in matches)
num_matches += len(matches)
# print("match group list: ", [match.group(0) for match in matches])
utt.num_math_terms = num_matches
utt.math_terms = match_list
# utt.math_match_positions = list(matched_positions)
# utt.math_terms_raw = [text[start:end] for start, end in matched_positions]
teacher_dict_list = []
student_dict_list = []
dict_list = []
for word in teacher_math_word_cloud.keys():
teacher_dict_list.append(
{'text': word, 'value': teacher_math_word_cloud[word], 'category': "math"})
dict_list.append({'text': word, 'value': teacher_math_word_cloud[word], 'category': "math"})
for word in student_math_word_cloud.keys():
student_dict_list.append(
{'text': word, 'value': student_math_word_cloud[word], 'category': "math"})
dict_list.append({'text': word, 'value': student_math_word_cloud[word], 'category': "math"})
sorted_dict_list = sorted(dict_list, key=lambda x: x['value'], reverse=True)
sorted_teacher_dict_list = sorted(teacher_dict_list, key=lambda x: x['value'], reverse=True)
sorted_student_dict_list = sorted(student_dict_list, key=lambda x: x['value'], reverse=True)
# return sorted_dict_list[:50]
return sorted_dict_list[:50], sorted_teacher_dict_list[:50], sorted_student_dict_list[:50]
class EndpointHandler():
def __init__(self, path="."):
print("Loading models...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
self.input_builder = BertInputBuilder(tokenizer=self.tokenizer)
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `list`):
List of dicts, where each dict represents an utterance; each utterance object must have a `speaker`,
`text` and `uid`and can include list of custom properties
parameters (:obj: `dict`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
utterances = data.pop("inputs", data)
params = data.pop("parameters", None)
transcript = Transcript(filename=params.pop("filename", None))
for utt in utterances:
transcript.add_utterance(Utterance(**utt))
print("Running inference on %d examples..." % transcript.length())
logging.set_verbosity_info()
# Uptake
uptake_model = UptakeModel(
self.device, self.tokenizer, self.input_builder)
uptake_speaker = params.pop("uptake_speaker", None)
uptake_model.run_inference(transcript, min_prev_words=params['uptake_min_num_words'],
uptake_speaker=uptake_speaker)
del uptake_model
# Reasoning
reasoning_model = ReasoningModel(
self.device, self.tokenizer, self.input_builder)
reasoning_model.run_inference(transcript, uptake_speaker=uptake_speaker)
del reasoning_model
# Question
question_model = QuestionModel(
self.device, self.tokenizer, self.input_builder)
question_model.run_inference(transcript)
del question_model
# Focusing Question
focusing_question_model = FocusingQuestionModel(
self.device, self.tokenizer, self.input_builder)
focusing_question_model.run_inference(transcript, uptake_speaker=uptake_speaker)
del focusing_question_model
transcript.update_utterance_roles(uptake_speaker)
sorted_math_cloud, teacher_math_cloud, student_math_cloud = run_math_density(transcript)
transcript.calculate_aggregate_word_count()
return_dict = {'talkDistribution': None, 'talkLength': None, 'talkMoments': None, 'studentTopWords': None, 'teacherTopWords': None}
talk_dist, talk_len = transcript.get_talk_distribution_and_length(uptake_speaker)
return_dict['talkDistribution'] = talk_dist
return_dict['talkLength'] = talk_len
talk_moments = transcript.get_talk_timeline()
return_dict['talkMoments'] = talk_moments
word_cloud, uptake_word_cloud, teacher_general_cloud, student_general_cloud = transcript.get_word_clouds()
teacher_cloud = teacher_math_cloud + teacher_general_cloud
student_cloud = student_math_cloud + student_general_cloud
# sorted_teacher_cloud = sorted(teacher_cloud, key=lambda x: x['value'], reverse=True)[:50]
# sorted_student_cloud = sorted(student_cloud, key=lambda x: x['value'], reverse=True)[:50]
return_dict['teacherTopWords'] = teacher_cloud
return_dict['studentTopWords'] = student_cloud
return return_dict