bitmesh / dit.py
hxddd's picture
Upload folder using huggingface_hub
f86793b verified
'''
-----------------------------------------------------------------------------
Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
NVIDIA CORPORATION and its licensors retain all intellectual property
and proprietary rights in and to this software, related documentation
and any modifications thereto. Any use, reproduction, disclosure or
distribution of this software and related documentation without an express
license agreement from NVIDIA CORPORATION is strictly prohibited.
-----------------------------------------------------------------------------
'''
import sys
sys.path.append('.')
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
import numpy as np
from DIT.attention import SelfAttention, SelfAttentionqknorm, CrossAttention, CrossAttentionqnorm
class GEGLU(nn.Module):
def forward(self, x):
x, gates = x.chunk(2, dim = -1)
return x * F.gelu(gates)
class FeedForward(nn.Module):
def __init__(self, dim, mult=4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, dim * mult * 2),
GEGLU(),
nn.Linear(dim * mult, dim)
)
def forward(self, x):
return self.net(x)
class Timesteps(nn.Module):
def __init__(self, num_channels=256, flip_sin_to_cos=False, downscale_freq_shift=0, scale=1, max_period=10000):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
self.max_period = max_period
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(self.max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - self.downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = self.scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if self.flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if self.num_channels % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
sample_proj_bias=True,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
self.act = F.silu
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim, sample_proj_bias)
def forward(self, sample):
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
# PixArtAlpha-style with removed cross-attention
class DiTLayer(nn.Module):
def __init__(self, dim, num_heads, gradient_checkpointing=True):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.gradient_checkpointing = gradient_checkpointing
self.norm1 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.attn1 = SelfAttentionqknorm(dim, num_heads)
self.attn2 = CrossAttentionqnorm(dim, num_heads)
self.norm2 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.norm3 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.norm4 = nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
self.ff = FeedForward(dim)
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim ** 0.5)
def forward(self, x, t_adaln,mask=None,condition=None):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, x, t_adaln,mask,condition, use_reentrant=False)
else:
return self._forward(x, t_adaln,mask,condition)
def _forward(self, x, t_adaln,mask=None,condition=None):
# x: [B, N, C], hidden states
# t_adaln: [B, 6, C], timestep embedding of adaln
# return: [B, N, C], updated hidden states
B, N, C = x.shape
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None] + t_adaln).chunk(6, dim=1)
# Self-attention block
# x1 = self.norm1(x)
x1 = self.norm1(x) * (1 + scale_msa) + shift_msa
x = x + gate_msa * self.norm2(self.attn1(x1,mask))
x = x + self.attn2(x, condition,mask)
# x = self.norm3(x)
x2 = self.norm3(x) * (1 + scale_mlp) + shift_mlp
x = x + gate_mlp * self.norm4(self.ff(x2))
return x
class DiT(nn.Module):
def __init__(self, hidden_dim=1024, num_heads=16, latent_size=2048, latent_dim=64, num_layers=24, gradient_checkpointing=True,length=50):
super().__init__()
self.length=length
self.latent_dim = latent_dim
# project in
self.proj_in = nn.Linear(latent_dim, hidden_dim)
self.hidden_dim=hidden_dim
# positional encoding (just use a learnable positional encoding)
# self.pos_embed = nn.Parameter(torch.randn(1, self.length, hidden_dim) / hidden_dim ** 0.5)
# timestep encoding
self.timestep_embed = Timesteps(num_channels=256)
self.timestep_proj = TimestepEmbedding(256, hidden_dim)
self.adaln_linear = nn.Linear(hidden_dim, hidden_dim * 6, bias=True)
self.num_faces = nn.Embedding(1000, hidden_dim)
self.num_linear = nn.Linear(hidden_dim, hidden_dim * 6, bias=True)
# transformer layers
self.layers = nn.ModuleList([DiTLayer(hidden_dim, num_heads, gradient_checkpointing) for _ in range(num_layers)])
# project out
self.norm_out = nn.LayerNorm(hidden_dim, eps=1e-6, elementwise_affine=False)
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_dim) / hidden_dim ** 0.5)
self.proj_out = nn.Linear(hidden_dim, latent_dim)
def forward(self, x, times,mask=None,condition=None,num_faces=None):
# x: [B, N, C], hidden states
# t: [B,], timestep
# return: [B, N, C], updated hidden states
# mask=None
if num_faces is None:
num_faces = mask.sum(-1)
B, N, C = x.shape
# project in
x = self.proj_in(x)
# positional encoding
# x = x + self.pos_embed
# timestep encoding
t_emb = self.timestep_embed(times)
t_emb = self.timestep_proj(t_emb) # [B, C]
t_adaln = self.adaln_linear(F.silu(t_emb)).view(B, 6, -1) # [B, 6, C]
t_adaln=t_adaln+self.num_linear(self.num_faces(num_faces)).view(B, 6, -1)
# transformer layers
for layer in self.layers:
x = layer(x, t_adaln,mask,condition)
# project out
shift, scale = (self.scale_shift_table[None] + t_emb[:, None]).chunk(2, dim=1)
x = self.norm_out(x)
x = x * (1 + scale) + shift
x = self.proj_out(x)
return x
if __name__ == '__main__':
# import kiui
# from kiui.nn.utils import count_parameters
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DiT(gradient_checkpointing=True).to(device)
print(model)
# total, trainable = count_parameters(model)
# print(f'[INFO] param total: {total/1024**2:.2f}M, trainable: {trainable/1024**2:.2f}M')
# test forward
x = torch.randn(16, 2048, 64, device=device, dtype=torch.float16)
times = torch.randint(0, 1000, (16,), device=device)
with torch.autocast(device_type='cuda', dtype=torch.float16):
y = model(x, times)
# kiui.lo(y)
mem_free, mem_total = torch.cuda.mem_get_info()
print(f'[INFO] mem forward: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G')
# test backward
loss = y.mean()
loss.backward()
mem_free, mem_total = torch.cuda.mem_get_info()
print(f'[INFO] mem backward: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G')