huypn16's picture
Create peer.py
018b585 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from datasets import load_dataset
from torch.utils.data import Dataset, DataLoader
from transformers import GPT2Tokenizer
import math
from einops import einsum
from tqdm import tqdm
from einops.layers.torch import Rearrange
import os
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler
def exists(v):
return v is not None
def default(v, d):
return v if exists(v) else d
class RMSNorm(nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(dim))
def forward(self, x):
return F.normalize(x, dim=-1) * self.scale * self.gamma
class ProductKeyMemory(nn.Module):
def __init__(self, dim, num_keys):
super().__init__()
self.dim = dim
self.num_keys = num_keys
self.keys = nn.Parameter(torch.randn(num_keys, dim // 2))
def forward(self, query):
query = query.view(query.shape[0], 2, -1)
dots = torch.einsum('bkd,nd->bkn', query, self.keys)
return dots.view(query.shape[0], -1)
class PEER(nn.Module):
def __init__(
self,
dim,
*,
heads=8,
num_experts=1_000_000,
num_experts_per_head=16,
activation=nn.GELU,
dim_key=None,
product_key_topk=None,
separate_embed_per_head=False,
pre_rmsnorm=False,
dropout=0.
):
super().__init__()
self.norm = RMSNorm(dim) if pre_rmsnorm else nn.Identity()
self.heads = heads
self.separate_embed_per_head = separate_embed_per_head
self.num_experts = num_experts
num_expert_sets = heads if separate_embed_per_head else 1
self.weight_down_embed = nn.Embedding(num_experts * num_expert_sets, dim)
self.weight_up_embed = nn.Embedding(num_experts * num_expert_sets, dim)
self.activation = activation()
assert (num_experts ** 0.5).is_integer(), '`num_experts` needs to be a square'
assert (dim % 2) == 0, 'feature dimension should be divisible by 2'
dim_key = default(dim_key, dim // 2)
self.num_keys = int(num_experts ** 0.5)
self.to_queries = nn.Sequential(
nn.Linear(dim, dim_key * heads * 2, bias=False),
Rearrange('b n (p h d) -> p b n h d', p=2, h=heads)
)
self.product_key_topk = default(product_key_topk, num_experts_per_head)
self.num_experts_per_head = num_experts_per_head
self.keys = nn.Parameter(torch.randn(heads, self.num_keys, 2, dim_key))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.norm(x)
queries = self.to_queries(x)
sim = einsum(queries, self.keys, 'p b n h d, h k p d -> p b n h k')
(scores_x, scores_y), (indices_x, indices_y) = [s.topk(self.product_key_topk, dim=-1) for s in sim]
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_indices = indices_x.unsqueeze(-1) * self.num_keys + indices_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
scores, pk_indices = all_scores.topk(self.num_experts_per_head, dim=-1)
indices = all_indices.gather(-1, pk_indices)
if self.separate_embed_per_head:
head_expert_offsets = torch.arange(self.heads, device=x.device) * self.num_experts
indices = indices + head_expert_offsets.view(1, 1, -1, 1)
weights_down = self.weight_down_embed(pk_indices)
weights_up = self.weight_up_embed(pk_indices)
x = einsum(x, weights_down, 'b n d, b n h k d -> b n h k')
x = self.activation(x)
x = self.dropout(x)
x = x * F.softmax(scores, dim=-1)
x = einsum(x, weights_up, 'b n h k, b n h k d -> b n d')
return x
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, num_experts, num_experts_per_head, dropout=0.1):
super(TransformerBlock, self).__init__()
self.attention = nn.MultiheadAttention(dim, num_heads)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.peer1 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
self.peer2 = PEER(dim, heads=num_heads, num_experts=num_experts, num_experts_per_head=num_experts_per_head)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
attn_output, _ = self.attention(x, x, x)
x = x + self.dropout(attn_output)
x = self.norm1(x)
peer_output1 = self.peer1(x)
peer_output2 = self.peer2(F.gelu(peer_output1))
x = x + self.dropout(peer_output2)
x = self.norm2(x)
return x
class PEERLanguageModel(nn.Module):
def __init__(self, vocab_size, dim, num_layers, num_heads, num_experts, top_k):
super().__init__()
self.token_embedding = nn.Embedding(vocab_size, dim)
self.position_embedding = nn.Embedding(512, dim)
self.layers = nn.ModuleList([TransformerBlock(dim, num_heads, num_experts, top_k) for _ in range(num_layers)])
self.layer_norm = nn.LayerNorm(dim)
self.lm_head = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
b, s = x.shape
positions = torch.arange(s, device=x.device).unsqueeze(0).expand(b, s)
x = self.token_embedding(x) + self.position_embedding(positions)
for layer in self.layers:
x = layer(x)
x = self.layer_norm(x)
logits = self.lm_head(x)
return logits
class PileDataset(Dataset):
def __init__(self, file_path, tokenizer, split='train', max_length=512):
self.tokenizer = tokenizer
self.max_length = max_length
self.data = load_dataset(file_path, "wikitext-103-raw-v1", split=split)
self.data = self.data.filter(lambda x: len(x['text']) > 0)
if split == "train":
self.data = self.data.select(range(0,300000))
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
text = self.data[idx]['text']
encoding = self.tokenizer(text, max_length=self.max_length, truncation=True, padding='max_length', return_tensors='pt')
return encoding['input_ids'].squeeze(), encoding['attention_mask'].squeeze()
def train(model, train_loader, optimizer, device):
model.train()
total_loss = 0
for batch in tqdm(train_loader, disable=not torch.distributed.get_rank() == 0):
input_ids, attention_mask = batch
input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
optimizer.zero_grad()
# Shift the input_ids and attention_mask to create targets
targets = input_ids[:, 1:].contiguous()
input_ids = input_ids[:, :-1].contiguous()
attention_mask = attention_mask[:, :-1].contiguous()
outputs = model(input_ids)
# Reshape outputs and targets for loss calculation
outputs = outputs.view(-1, outputs.size(-1))
targets = targets.view(-1)
# Calculate loss (ignore padding token, usually 0)
loss = F.cross_entropy(outputs, targets, ignore_index=0)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(train_loader)
def validate(model, val_loader, device):
model.eval()
total_loss = 0
with torch.no_grad():
for batch in tqdm(val_loader):
input_ids, attention_mask = batch
input_ids, attention_mask = input_ids.to(device), attention_mask.to(device)
outputs = model(input_ids)
loss = F.cross_entropy(outputs.view(-1, outputs.size(-1)), input_ids.view(-1), ignore_index=0)
total_loss += loss.item()
return total_loss / len(val_loader)
# main execution
if __name__ == "__main__":
# Initialize distributed environment
dist.init_process_group(backend='nccl')
local_rank = int(os.environ["LOCAL_RANK"])
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
# Hyperparameters
vocab_size = 50257 # GPT-2 tokenizer vocab size
dim = 256
num_layers = 8
num_heads = 8
num_experts = 512 * 512 # 1M experts
top_k = 16
batch_size = 6
num_epochs = 10
learning_rate = 1e-4
# Initialize tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
model = PEERLanguageModel(vocab_size, dim, num_layers, num_heads, num_experts, top_k).to(device)
# Wrap the model with DistributedDataParallel
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
# Load Pile dataset
train_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='train')
val_dataset = PileDataset('Salesforce/wikitext', tokenizer, split='validation')
# Use DistributedSampler for the training data
train_sampler = DistributedSampler(train_dataset)
train_loader = DataLoader(train_dataset, batch_size=batch_size, sampler=train_sampler)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
if local_rank == 0:
print("Number of parameters:", sum(p.numel() for p in model.parameters()))
# Training and validation loop
best_val_loss = float('inf')
for epoch in range(num_epochs):
train_sampler.set_epoch(epoch)
if local_rank == 0:
print(f"Epoch Training {epoch+1}/{num_epochs}")
train_loss = train(model, train_loader, optimizer, device)
if local_rank == 0:
print(f"Epoch Validation {epoch+1}/{num_epochs}")
val_loss = validate(model, val_loader, device)
print(f"Epoch {epoch+1}/{num_epochs}, Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}")
# Save the best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), 'best_peer_language_model.pth')
# Save the final trained model
if local_rank == 0:
torch.save(model.state_dict(), 'final_peer_language_model.pth')
# Clean up
dist.destroy_process_group()