huudan123 commited on
Commit
0242190
1 Parent(s): 30a0180

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,402 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: huudan123/model_stage2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:5749
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: trắng và nâu đang chạy nhanh qua đám cỏ.
27
+ sentences:
28
+ - Một chiếc máy bay trên bầu trời.
29
+ - trắng lớn đang chạy trên cỏ.
30
+ - Hai con đại bàng đang đậu trên cành cây.
31
+ - source_sentence: Chúng tôi đang di chuyển \"... liên quan đến khung nghỉ vũ trụ
32
+ comoving ... với tốc độ khoảng 371 km/s về phía chòm sao Sư Tử\".
33
+ sentences:
34
+ - Một bức ảnh đen trắng của một người đàn ông đứng cạnh xe buýt.
35
+ - Một vận động viên quần vợt ở giữa trận đấu.
36
+ - Không có 'tĩnh' không liên quan đến một số đối tượng khác.
37
+ - source_sentence: Một người đàn ông đang trượt băng xuống cầu thang.
38
+ sentences:
39
+ - Tôi đồng ý với những người khác rằng theo dõi thời gian của bạn là cơ bản cho
40
+ giải pháp.
41
+ - Người đàn ông đang trượt tuyết xuống một ngọn đồi tuyết.
42
+ - Một đứa bé đang cười.
43
+ - source_sentence: Theo trang web này, cường độ khả kiến cực đại sẽ vào khoảng 10,5
44
+ vào khoảng ngày 2/2.
45
+ sentences:
46
+ - Trẻ em nhìn một con cừu.
47
+ - Dữ liệu AAVSO dường như chỉ ra rằng nó có thể đã đạt đỉnh, vào khoảng 10,5 (trực
48
+ quan).
49
+ - Chim đen đứng trên bê tông.
50
+ - source_sentence: Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.
51
+ sentences:
52
+ - Những ở một mình trong rừng.
53
+ - Cô gái đang đứng trước cánh cửa mở của xe buýt.
54
+ - Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế sân nhà.
55
+ model-index:
56
+ - name: SentenceTransformer based on huudan123/model_stage2
57
+ results:
58
+ - task:
59
+ type: semantic-similarity
60
+ name: Semantic Similarity
61
+ dataset:
62
+ name: sts evaluator
63
+ type: sts-evaluator
64
+ metrics:
65
+ - type: pearson_cosine
66
+ value: 0.8441503922725311
67
+ name: Pearson Cosine
68
+ - type: spearman_cosine
69
+ value: 0.8421281238969126
70
+ name: Spearman Cosine
71
+ - type: pearson_manhattan
72
+ value: 0.8279892522911001
73
+ name: Pearson Manhattan
74
+ - type: spearman_manhattan
75
+ value: 0.8330983818487536
76
+ name: Spearman Manhattan
77
+ - type: pearson_euclidean
78
+ value: 0.828894636417398
79
+ name: Pearson Euclidean
80
+ - type: spearman_euclidean
81
+ value: 0.8343292047884723
82
+ name: Spearman Euclidean
83
+ - type: pearson_dot
84
+ value: 0.8275373666846605
85
+ name: Pearson Dot
86
+ - type: spearman_dot
87
+ value: 0.8264754887785616
88
+ name: Spearman Dot
89
+ - type: pearson_max
90
+ value: 0.8441503922725311
91
+ name: Pearson Max
92
+ - type: spearman_max
93
+ value: 0.8421281238969126
94
+ name: Spearman Max
95
+ ---
96
+
97
+ # SentenceTransformer based on huudan123/model_stage2
98
+
99
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
100
+
101
+ ## Model Details
102
+
103
+ ### Model Description
104
+ - **Model Type:** Sentence Transformer
105
+ - **Base model:** [huudan123/model_stage2](https://huggingface.co/huudan123/model_stage2) <!-- at revision 78216f64916cdd3714bc707046c014a6f562e89b -->
106
+ - **Maximum Sequence Length:** 512 tokens
107
+ - **Output Dimensionality:** 768 tokens
108
+ - **Similarity Function:** Cosine Similarity
109
+ <!-- - **Training Dataset:** Unknown -->
110
+ <!-- - **Language:** Unknown -->
111
+ <!-- - **License:** Unknown -->
112
+
113
+ ### Model Sources
114
+
115
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
116
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
117
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
118
+
119
+ ### Full Model Architecture
120
+
121
+ ```
122
+ SentenceTransformer(
123
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
124
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
125
+ )
126
+ ```
127
+
128
+ ## Usage
129
+
130
+ ### Direct Usage (Sentence Transformers)
131
+
132
+ First install the Sentence Transformers library:
133
+
134
+ ```bash
135
+ pip install -U sentence-transformers
136
+ ```
137
+
138
+ Then you can load this model and run inference.
139
+ ```python
140
+ from sentence_transformers import SentenceTransformer
141
+
142
+ # Download from the 🤗 Hub
143
+ model = SentenceTransformer("huudan123/model_stage3_2_loss")
144
+ # Run inference
145
+ sentences = [
146
+ 'Tôi có thể nghĩ ra ba yếu tố chính là những phỏng đoán khá logic.',
147
+ 'Đã có khá nhiều nghiên cứu trong bóng đá / bóng đá thảo luận về lợi thế sân nhà.',
148
+ 'Cô gái đang đứng trước cánh cửa mở của xe buýt.',
149
+ ]
150
+ embeddings = model.encode(sentences)
151
+ print(embeddings.shape)
152
+ # [3, 768]
153
+
154
+ # Get the similarity scores for the embeddings
155
+ similarities = model.similarity(embeddings, embeddings)
156
+ print(similarities.shape)
157
+ # [3, 3]
158
+ ```
159
+
160
+ <!--
161
+ ### Direct Usage (Transformers)
162
+
163
+ <details><summary>Click to see the direct usage in Transformers</summary>
164
+
165
+ </details>
166
+ -->
167
+
168
+ <!--
169
+ ### Downstream Usage (Sentence Transformers)
170
+
171
+ You can finetune this model on your own dataset.
172
+
173
+ <details><summary>Click to expand</summary>
174
+
175
+ </details>
176
+ -->
177
+
178
+ <!--
179
+ ### Out-of-Scope Use
180
+
181
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
182
+ -->
183
+
184
+ ## Evaluation
185
+
186
+ ### Metrics
187
+
188
+ #### Semantic Similarity
189
+ * Dataset: `sts-evaluator`
190
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
191
+
192
+ | Metric | Value |
193
+ |:-------------------|:-----------|
194
+ | pearson_cosine | 0.8442 |
195
+ | spearman_cosine | 0.8421 |
196
+ | pearson_manhattan | 0.828 |
197
+ | spearman_manhattan | 0.8331 |
198
+ | pearson_euclidean | 0.8289 |
199
+ | spearman_euclidean | 0.8343 |
200
+ | pearson_dot | 0.8275 |
201
+ | spearman_dot | 0.8265 |
202
+ | pearson_max | 0.8442 |
203
+ | **spearman_max** | **0.8421** |
204
+
205
+ <!--
206
+ ## Bias, Risks and Limitations
207
+
208
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
209
+ -->
210
+
211
+ <!--
212
+ ### Recommendations
213
+
214
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
215
+ -->
216
+
217
+ ## Training Details
218
+
219
+ ### Training Hyperparameters
220
+ #### Non-Default Hyperparameters
221
+
222
+ - `overwrite_output_dir`: True
223
+ - `eval_strategy`: epoch
224
+ - `per_device_train_batch_size`: 128
225
+ - `per_device_eval_batch_size`: 128
226
+ - `learning_rate`: 2e-05
227
+ - `num_train_epochs`: 30
228
+ - `warmup_ratio`: 0.1
229
+ - `fp16`: True
230
+ - `load_best_model_at_end`: True
231
+ - `gradient_checkpointing`: True
232
+
233
+ #### All Hyperparameters
234
+ <details><summary>Click to expand</summary>
235
+
236
+ - `overwrite_output_dir`: True
237
+ - `do_predict`: False
238
+ - `eval_strategy`: epoch
239
+ - `prediction_loss_only`: True
240
+ - `per_device_train_batch_size`: 128
241
+ - `per_device_eval_batch_size`: 128
242
+ - `per_gpu_train_batch_size`: None
243
+ - `per_gpu_eval_batch_size`: None
244
+ - `gradient_accumulation_steps`: 1
245
+ - `eval_accumulation_steps`: None
246
+ - `learning_rate`: 2e-05
247
+ - `weight_decay`: 0.0
248
+ - `adam_beta1`: 0.9
249
+ - `adam_beta2`: 0.999
250
+ - `adam_epsilon`: 1e-08
251
+ - `max_grad_norm`: 1.0
252
+ - `num_train_epochs`: 30
253
+ - `max_steps`: -1
254
+ - `lr_scheduler_type`: linear
255
+ - `lr_scheduler_kwargs`: {}
256
+ - `warmup_ratio`: 0.1
257
+ - `warmup_steps`: 0
258
+ - `log_level`: passive
259
+ - `log_level_replica`: warning
260
+ - `log_on_each_node`: True
261
+ - `logging_nan_inf_filter`: True
262
+ - `save_safetensors`: True
263
+ - `save_on_each_node`: False
264
+ - `save_only_model`: False
265
+ - `restore_callback_states_from_checkpoint`: False
266
+ - `no_cuda`: False
267
+ - `use_cpu`: False
268
+ - `use_mps_device`: False
269
+ - `seed`: 42
270
+ - `data_seed`: None
271
+ - `jit_mode_eval`: False
272
+ - `use_ipex`: False
273
+ - `bf16`: False
274
+ - `fp16`: True
275
+ - `fp16_opt_level`: O1
276
+ - `half_precision_backend`: auto
277
+ - `bf16_full_eval`: False
278
+ - `fp16_full_eval`: False
279
+ - `tf32`: None
280
+ - `local_rank`: 0
281
+ - `ddp_backend`: None
282
+ - `tpu_num_cores`: None
283
+ - `tpu_metrics_debug`: False
284
+ - `debug`: []
285
+ - `dataloader_drop_last`: False
286
+ - `dataloader_num_workers`: 0
287
+ - `dataloader_prefetch_factor`: None
288
+ - `past_index`: -1
289
+ - `disable_tqdm`: False
290
+ - `remove_unused_columns`: True
291
+ - `label_names`: None
292
+ - `load_best_model_at_end`: True
293
+ - `ignore_data_skip`: False
294
+ - `fsdp`: []
295
+ - `fsdp_min_num_params`: 0
296
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
297
+ - `fsdp_transformer_layer_cls_to_wrap`: None
298
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
299
+ - `deepspeed`: None
300
+ - `label_smoothing_factor`: 0.0
301
+ - `optim`: adamw_torch
302
+ - `optim_args`: None
303
+ - `adafactor`: False
304
+ - `group_by_length`: False
305
+ - `length_column_name`: length
306
+ - `ddp_find_unused_parameters`: None
307
+ - `ddp_bucket_cap_mb`: None
308
+ - `ddp_broadcast_buffers`: False
309
+ - `dataloader_pin_memory`: True
310
+ - `dataloader_persistent_workers`: False
311
+ - `skip_memory_metrics`: True
312
+ - `use_legacy_prediction_loop`: False
313
+ - `push_to_hub`: False
314
+ - `resume_from_checkpoint`: None
315
+ - `hub_model_id`: None
316
+ - `hub_strategy`: every_save
317
+ - `hub_private_repo`: False
318
+ - `hub_always_push`: False
319
+ - `gradient_checkpointing`: True
320
+ - `gradient_checkpointing_kwargs`: None
321
+ - `include_inputs_for_metrics`: False
322
+ - `eval_do_concat_batches`: True
323
+ - `fp16_backend`: auto
324
+ - `push_to_hub_model_id`: None
325
+ - `push_to_hub_organization`: None
326
+ - `mp_parameters`:
327
+ - `auto_find_batch_size`: False
328
+ - `full_determinism`: False
329
+ - `torchdynamo`: None
330
+ - `ray_scope`: last
331
+ - `ddp_timeout`: 1800
332
+ - `torch_compile`: False
333
+ - `torch_compile_backend`: None
334
+ - `torch_compile_mode`: None
335
+ - `dispatch_batches`: None
336
+ - `split_batches`: None
337
+ - `include_tokens_per_second`: False
338
+ - `include_num_input_tokens_seen`: False
339
+ - `neftune_noise_alpha`: None
340
+ - `optim_target_modules`: None
341
+ - `batch_eval_metrics`: False
342
+ - `eval_on_start`: False
343
+ - `batch_sampler`: batch_sampler
344
+ - `multi_dataset_batch_sampler`: proportional
345
+
346
+ </details>
347
+
348
+ ### Training Logs
349
+ | Epoch | Step | loss | sts-evaluator_spearman_max |
350
+ |:-------:|:------:|:---------:|:--------------------------:|
351
+ | 0 | 0 | - | 0.6240 |
352
+ | **1.0** | **45** | **0.042** | **0.7695** |
353
+ | 2.0 | 90 | 0.0360 | 0.8062 |
354
+ | 3.0 | 135 | 0.0303 | 0.8343 |
355
+ | 4.0 | 180 | 0.0299 | 0.8375 |
356
+ | 5.0 | 225 | 0.0287 | 0.8421 |
357
+
358
+ * The bold row denotes the saved checkpoint.
359
+
360
+ ### Framework Versions
361
+ - Python: 3.10.12
362
+ - Sentence Transformers: 3.0.1
363
+ - Transformers: 4.42.4
364
+ - PyTorch: 2.3.1+cu121
365
+ - Accelerate: 0.33.0
366
+ - Datasets: 2.20.0
367
+ - Tokenizers: 0.19.1
368
+
369
+ ## Citation
370
+
371
+ ### BibTeX
372
+
373
+ #### Sentence Transformers
374
+ ```bibtex
375
+ @inproceedings{reimers-2019-sentence-bert,
376
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
377
+ author = "Reimers, Nils and Gurevych, Iryna",
378
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
379
+ month = "11",
380
+ year = "2019",
381
+ publisher = "Association for Computational Linguistics",
382
+ url = "https://arxiv.org/abs/1908.10084",
383
+ }
384
+ ```
385
+
386
+ <!--
387
+ ## Glossary
388
+
389
+ *Clearly define terms in order to be accessible across audiences.*
390
+ -->
391
+
392
+ <!--
393
+ ## Model Card Authors
394
+
395
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
396
+ -->
397
+
398
+ <!--
399
+ ## Model Card Contact
400
+
401
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
402
+ -->
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<mask>": 64000
3
+ }
bpe.codes ADDED
The diff for this file is too large to render. See raw diff
 
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./final_output",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 258,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "PhobertTokenizer",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 64001
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7226094cbdcd8687f3a507fc53d99b6ca000f5f16c24d1161b8a55e75fb11277
3
+ size 540015464
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "64000": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "PhobertTokenizer",
53
+ "unk_token": "<unk>"
54
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff