Adding ONNX file of this model
Browse filesBeep boop I am the [ONNX export bot 🤖🏎️](https://huggingface.co/spaces/onnx/export). On behalf of [trylion](https://huggingface.co/trylion), I would like to add to this repository the model converted to ONNX.
What is ONNX? It stands for "Open Neural Network Exchange", and is the most commonly used open standard for machine learning interoperability. You can find out more at [onnx.ai](https://onnx.ai/)!
The exported ONNX model can be then be consumed by various backends as TensorRT or TVM, or simply be used in a few lines with 🤗 Optimum through ONNX Runtime, check out how [here](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models)!
- onnx/config.json +209 -0
- onnx/model.onnx +3 -0
- onnx/preprocessor_config.json +24 -0
onnx/config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "hustvl/yolos-tiny",
|
3 |
+
"architectures": [
|
4 |
+
"YolosForObjectDetection"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auxiliary_loss": false,
|
8 |
+
"bbox_cost": 5,
|
9 |
+
"bbox_loss_coefficient": 5,
|
10 |
+
"class_cost": 1,
|
11 |
+
"eos_coefficient": 0.1,
|
12 |
+
"giou_cost": 2,
|
13 |
+
"giou_loss_coefficient": 2,
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.0,
|
16 |
+
"hidden_size": 192,
|
17 |
+
"id2label": {
|
18 |
+
"0": "N/A",
|
19 |
+
"1": "person",
|
20 |
+
"2": "bicycle",
|
21 |
+
"3": "car",
|
22 |
+
"4": "motorcycle",
|
23 |
+
"5": "airplane",
|
24 |
+
"6": "bus",
|
25 |
+
"7": "train",
|
26 |
+
"8": "truck",
|
27 |
+
"9": "boat",
|
28 |
+
"10": "traffic light",
|
29 |
+
"11": "fire hydrant",
|
30 |
+
"12": "N/A",
|
31 |
+
"13": "stop sign",
|
32 |
+
"14": "parking meter",
|
33 |
+
"15": "bench",
|
34 |
+
"16": "bird",
|
35 |
+
"17": "cat",
|
36 |
+
"18": "dog",
|
37 |
+
"19": "horse",
|
38 |
+
"20": "sheep",
|
39 |
+
"21": "cow",
|
40 |
+
"22": "elephant",
|
41 |
+
"23": "bear",
|
42 |
+
"24": "zebra",
|
43 |
+
"25": "giraffe",
|
44 |
+
"26": "N/A",
|
45 |
+
"27": "backpack",
|
46 |
+
"28": "umbrella",
|
47 |
+
"29": "N/A",
|
48 |
+
"30": "N/A",
|
49 |
+
"31": "handbag",
|
50 |
+
"32": "tie",
|
51 |
+
"33": "suitcase",
|
52 |
+
"34": "frisbee",
|
53 |
+
"35": "skis",
|
54 |
+
"36": "snowboard",
|
55 |
+
"37": "sports ball",
|
56 |
+
"38": "kite",
|
57 |
+
"39": "baseball bat",
|
58 |
+
"40": "baseball glove",
|
59 |
+
"41": "skateboard",
|
60 |
+
"42": "surfboard",
|
61 |
+
"43": "tennis racket",
|
62 |
+
"44": "bottle",
|
63 |
+
"45": "N/A",
|
64 |
+
"46": "wine glass",
|
65 |
+
"47": "cup",
|
66 |
+
"48": "fork",
|
67 |
+
"49": "knife",
|
68 |
+
"50": "spoon",
|
69 |
+
"51": "bowl",
|
70 |
+
"52": "banana",
|
71 |
+
"53": "apple",
|
72 |
+
"54": "sandwich",
|
73 |
+
"55": "orange",
|
74 |
+
"56": "broccoli",
|
75 |
+
"57": "carrot",
|
76 |
+
"58": "hot dog",
|
77 |
+
"59": "pizza",
|
78 |
+
"60": "donut",
|
79 |
+
"61": "cake",
|
80 |
+
"62": "chair",
|
81 |
+
"63": "couch",
|
82 |
+
"64": "potted plant",
|
83 |
+
"65": "bed",
|
84 |
+
"66": "N/A",
|
85 |
+
"67": "dining table",
|
86 |
+
"68": "N/A",
|
87 |
+
"69": "N/A",
|
88 |
+
"70": "toilet",
|
89 |
+
"71": "N/A",
|
90 |
+
"72": "tv",
|
91 |
+
"73": "laptop",
|
92 |
+
"74": "mouse",
|
93 |
+
"75": "remote",
|
94 |
+
"76": "keyboard",
|
95 |
+
"77": "cell phone",
|
96 |
+
"78": "microwave",
|
97 |
+
"79": "oven",
|
98 |
+
"80": "toaster",
|
99 |
+
"81": "sink",
|
100 |
+
"82": "refrigerator",
|
101 |
+
"83": "N/A",
|
102 |
+
"84": "book",
|
103 |
+
"85": "clock",
|
104 |
+
"86": "vase",
|
105 |
+
"87": "scissors",
|
106 |
+
"88": "teddy bear",
|
107 |
+
"89": "hair drier",
|
108 |
+
"90": "toothbrush"
|
109 |
+
},
|
110 |
+
"image_size": [
|
111 |
+
800,
|
112 |
+
1333
|
113 |
+
],
|
114 |
+
"initializer_range": 0.02,
|
115 |
+
"intermediate_size": 768,
|
116 |
+
"label2id": {
|
117 |
+
"N/A": 83,
|
118 |
+
"airplane": 5,
|
119 |
+
"apple": 53,
|
120 |
+
"backpack": 27,
|
121 |
+
"banana": 52,
|
122 |
+
"baseball bat": 39,
|
123 |
+
"baseball glove": 40,
|
124 |
+
"bear": 23,
|
125 |
+
"bed": 65,
|
126 |
+
"bench": 15,
|
127 |
+
"bicycle": 2,
|
128 |
+
"bird": 16,
|
129 |
+
"boat": 9,
|
130 |
+
"book": 84,
|
131 |
+
"bottle": 44,
|
132 |
+
"bowl": 51,
|
133 |
+
"broccoli": 56,
|
134 |
+
"bus": 6,
|
135 |
+
"cake": 61,
|
136 |
+
"car": 3,
|
137 |
+
"carrot": 57,
|
138 |
+
"cat": 17,
|
139 |
+
"cell phone": 77,
|
140 |
+
"chair": 62,
|
141 |
+
"clock": 85,
|
142 |
+
"couch": 63,
|
143 |
+
"cow": 21,
|
144 |
+
"cup": 47,
|
145 |
+
"dining table": 67,
|
146 |
+
"dog": 18,
|
147 |
+
"donut": 60,
|
148 |
+
"elephant": 22,
|
149 |
+
"fire hydrant": 11,
|
150 |
+
"fork": 48,
|
151 |
+
"frisbee": 34,
|
152 |
+
"giraffe": 25,
|
153 |
+
"hair drier": 89,
|
154 |
+
"handbag": 31,
|
155 |
+
"horse": 19,
|
156 |
+
"hot dog": 58,
|
157 |
+
"keyboard": 76,
|
158 |
+
"kite": 38,
|
159 |
+
"knife": 49,
|
160 |
+
"laptop": 73,
|
161 |
+
"microwave": 78,
|
162 |
+
"motorcycle": 4,
|
163 |
+
"mouse": 74,
|
164 |
+
"orange": 55,
|
165 |
+
"oven": 79,
|
166 |
+
"parking meter": 14,
|
167 |
+
"person": 1,
|
168 |
+
"pizza": 59,
|
169 |
+
"potted plant": 64,
|
170 |
+
"refrigerator": 82,
|
171 |
+
"remote": 75,
|
172 |
+
"sandwich": 54,
|
173 |
+
"scissors": 87,
|
174 |
+
"sheep": 20,
|
175 |
+
"sink": 81,
|
176 |
+
"skateboard": 41,
|
177 |
+
"skis": 35,
|
178 |
+
"snowboard": 36,
|
179 |
+
"spoon": 50,
|
180 |
+
"sports ball": 37,
|
181 |
+
"stop sign": 13,
|
182 |
+
"suitcase": 33,
|
183 |
+
"surfboard": 42,
|
184 |
+
"teddy bear": 88,
|
185 |
+
"tennis racket": 43,
|
186 |
+
"tie": 32,
|
187 |
+
"toaster": 80,
|
188 |
+
"toilet": 70,
|
189 |
+
"toothbrush": 90,
|
190 |
+
"traffic light": 10,
|
191 |
+
"train": 7,
|
192 |
+
"truck": 8,
|
193 |
+
"tv": 72,
|
194 |
+
"umbrella": 28,
|
195 |
+
"vase": 86,
|
196 |
+
"wine glass": 46,
|
197 |
+
"zebra": 24
|
198 |
+
},
|
199 |
+
"layer_norm_eps": 1e-12,
|
200 |
+
"model_type": "yolos",
|
201 |
+
"num_attention_heads": 3,
|
202 |
+
"num_channels": 3,
|
203 |
+
"num_detection_tokens": 100,
|
204 |
+
"num_hidden_layers": 12,
|
205 |
+
"patch_size": 16,
|
206 |
+
"qkv_bias": true,
|
207 |
+
"transformers_version": "4.37.2",
|
208 |
+
"use_mid_position_embeddings": false
|
209 |
+
}
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afb594b205ae34b4ad04c33538e46d9c693397173ad05265c4a6ed23f2459a28
|
3 |
+
size 26237216
|
onnx/preprocessor_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"do_pad": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"format": "coco_detection",
|
7 |
+
"image_mean": [
|
8 |
+
0.485,
|
9 |
+
0.456,
|
10 |
+
0.406
|
11 |
+
],
|
12 |
+
"image_processor_type": "YolosFeatureExtractor",
|
13 |
+
"image_std": [
|
14 |
+
0.229,
|
15 |
+
0.224,
|
16 |
+
0.225
|
17 |
+
],
|
18 |
+
"resample": 2,
|
19 |
+
"rescale_factor": 0.00392156862745098,
|
20 |
+
"size": {
|
21 |
+
"longest_edge": 1333,
|
22 |
+
"shortest_edge": 512
|
23 |
+
}
|
24 |
+
}
|