|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig, layer_type_validation |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
|
|
|
class InfiniteVLVisionConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`InfiniteVLVisionModel`]. |
|
|
|
|
|
Args: |
|
|
depth (`int`, *optional*, defaults to 32): |
|
|
The number of layers in the vision transformer. |
|
|
hidden_size (`int`, *optional*, defaults to 3584): |
|
|
Dimensionality of the encoder layers and the pooler layer. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
|
The non-linear activation function (function or string) in the encoder and pooler. |
|
|
intermediate_size (`int`, *optional*, defaults to 3420): |
|
|
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
|
num_heads (`int`, *optional*, defaults to 16): |
|
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
|
in_channels (`int`, *optional*, defaults to 3): |
|
|
Number of input channels. |
|
|
patch_size (`int`, *optional*, defaults to 14): |
|
|
The size (resolution) of each patch. |
|
|
spatial_merge_size (`int`, *optional*, defaults to 2): |
|
|
The scaling factor for spatial merging of patches. |
|
|
temporal_patch_size (`int`, *optional*, defaults to 2): |
|
|
The size of patches along the temporal dimension. |
|
|
tokens_per_second (`int`, *optional*, defaults to 4): |
|
|
Number of tokens processed per second for video inputs. |
|
|
window_size (`int`, *optional*, defaults to 112): |
|
|
The window size for windowed attention mechanisms. |
|
|
out_hidden_size (`int`, *optional*, defaults to 3584): |
|
|
Dimensionality of the output hidden states. |
|
|
fullatt_block_indexes (`list`, *optional*): |
|
|
Indices of blocks that use full attention instead of windowed attention. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
""" |
|
|
|
|
|
model_type = "infinite_vl" |
|
|
base_config_key = "vision_config" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
depth=32, |
|
|
hidden_size=3584, |
|
|
hidden_act="silu", |
|
|
intermediate_size=3420, |
|
|
num_heads=16, |
|
|
in_channels=3, |
|
|
patch_size=14, |
|
|
spatial_merge_size=2, |
|
|
temporal_patch_size=2, |
|
|
tokens_per_second=4, |
|
|
window_size=112, |
|
|
out_hidden_size=3584, |
|
|
fullatt_block_indexes=None, |
|
|
initializer_range=0.02, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
if fullatt_block_indexes is None: |
|
|
fullatt_block_indexes = [7, 15, 23, 31] |
|
|
|
|
|
self.depth = depth |
|
|
self.hidden_size = hidden_size |
|
|
self.hidden_act = hidden_act |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_heads = num_heads |
|
|
self.in_channels = in_channels |
|
|
self.patch_size = patch_size |
|
|
self.spatial_merge_size = spatial_merge_size |
|
|
self.temporal_patch_size = temporal_patch_size |
|
|
self.tokens_per_second = tokens_per_second |
|
|
self.window_size = window_size |
|
|
self.fullatt_block_indexes = fullatt_block_indexes |
|
|
self.out_hidden_size = out_hidden_size |
|
|
self.initializer_range = initializer_range |
|
|
|
|
|
|
|
|
class InfiniteVLTextConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`InfiniteVLTextModel`]. It is used to instantiate an |
|
|
InfiniteVL model according to the specified arguments, defining the model architecture. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 152064): |
|
|
Vocabulary size of the InfiniteVL model. Defines the number of different tokens that can be represented by the |
|
|
`inputs_ids` passed when calling [`InfiniteVLModel`] |
|
|
hidden_size (`int`, *optional*, defaults to 8192): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 29568): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 80): |
|
|
Number of hidden layers in the Transformer encoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 64): |
|
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 32768): |
|
|
The maximum sequence length that this model might ever be used with. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether the model's input and output word embeddings should be tied. |
|
|
rope_theta (`float`, *optional*, defaults to 1000000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
use_sliding_window (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use sliding window attention. |
|
|
sliding_window (`int`, *optional*, defaults to 32768): |
|
|
Sliding window attention (SWA) window size. |
|
|
max_window_layers (`int`, *optional*, defaults to 80): |
|
|
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any |
|
|
additional layer afterwards will use SWA (Sliding Window Attention). |
|
|
layer_types (`list`, *optional*): |
|
|
Attention pattern for each layer. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
rope_scaling (`Dict`, *optional*): |
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
|
accordingly. |
|
|
expand_v (`float`, *optional*, defaults to 2): |
|
|
Expansion factor for the value dimension in the linear attention/DeltaNet layer. |
|
|
mode (`str`, *optional*, defaults to `"chunk"`): |
|
|
Execution mode for the linear attention layer (e.g., "chunk" or "fused_recurrent"). |
|
|
use_gate (`bool`, *optional*, defaults to `True`): |
|
|
Whether to use the gating mechanism in the DeltaNet layer. |
|
|
use_short_conv (`bool`, *optional*, defaults to `True`): |
|
|
Whether to use short convolution in the linear attention layer. |
|
|
conv_size (`int`, *optional*, defaults to 4): |
|
|
Kernel size for the short convolution. |
|
|
conv_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use bias in the short convolution. |
|
|
num_linear_key_value_heads (`int`, *optional*, defaults to 16): |
|
|
Number of key/value heads used in the linear attention layers. |
|
|
num_linear_heads (`int`, *optional*, defaults to 16): |
|
|
Number of query heads used in the linear attention layers. |
|
|
linear_head_dim (`int`, *optional*, defaults to 128): |
|
|
Dimension of each head in the linear attention layers. |
|
|
norm_eps (`float`, *optional*, defaults to 1e-5): |
|
|
Epsilon value for normalization layers in the linear attention branch. |
|
|
|
|
|
```python |
|
|
>>> from transformers import InfiniteVLTextModel, InfiniteVLConfig |
|
|
|
|
|
>>> # Initializing an InfiniteVL style configuration |
|
|
>>> configuration = InfiniteVLConfig() |
|
|
|
|
|
>>> # Initializing a model from the InfiniteVL style configuration |
|
|
>>> model = InfiniteVLTextModel(configuration.text_config) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "infinite_vl_text" |
|
|
base_config_key = "text_config" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise", |
|
|
"layers.*.self_attn.k_proj": "colwise", |
|
|
"layers.*.self_attn.v_proj": "colwise", |
|
|
"layers.*.self_attn.o_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=152064, |
|
|
hidden_size=8192, |
|
|
intermediate_size=29568, |
|
|
num_hidden_layers=80, |
|
|
num_attention_heads=64, |
|
|
num_key_value_heads=8, |
|
|
head_dim=128, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=32768, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-05, |
|
|
norm_eps=1e-5, |
|
|
use_cache=True, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=1000000.0, |
|
|
use_sliding_window=False, |
|
|
sliding_window=32768, |
|
|
max_window_layers=80, |
|
|
layer_types=None, |
|
|
attention_dropout=0.0, |
|
|
rope_scaling=None, |
|
|
expand_v: float = 2, |
|
|
mode: str = "chunk", |
|
|
use_gate: bool = True, |
|
|
use_short_conv: bool = True, |
|
|
conv_size: int = 4, |
|
|
conv_bias: bool = False, |
|
|
num_linear_key_value_heads: int = 16, |
|
|
num_linear_heads: int = 16, |
|
|
linear_head_dim: int = 128, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.head_dim = head_dim |
|
|
self.use_sliding_window = use_sliding_window |
|
|
self.sliding_window = sliding_window if self.use_sliding_window else None |
|
|
self.max_window_layers = max_window_layers |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.attention_dropout = attention_dropout |
|
|
self.rope_scaling = rope_scaling |
|
|
|
|
|
|
|
|
self.expand_v = expand_v |
|
|
self.mode = mode |
|
|
self.use_gate = use_gate |
|
|
self.use_short_conv = use_short_conv |
|
|
self.conv_size = conv_size |
|
|
self.conv_bias = conv_bias |
|
|
self.num_linear_key_value_heads = num_linear_key_value_heads |
|
|
self.num_linear_heads = num_linear_heads |
|
|
self.linear_head_dim = linear_head_dim |
|
|
self.norm_eps = norm_eps |
|
|
|
|
|
self.layer_types = layer_types |
|
|
if self.layer_types is None: |
|
|
|
|
|
self.layer_types = [ |
|
|
"linear_attention" if bool(i % 4) else "sliding_attention" |
|
|
for i in range(self.num_hidden_layers) |
|
|
] |
|
|
|
|
|
layer_type_validation(self.layer_types, self.num_hidden_layers) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
if self.rope_scaling["type"] == "mrope": |
|
|
self.rope_scaling["type"] = "default" |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
|
|
|
rope_config_validation(self, ignore_keys={"mrope_section"}) |
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
|
|
|
|
|
|
class InfiniteVLConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`InfiniteVLModel`]. It is used to instantiate an |
|
|
InfiniteVL model according to the specified arguments, defining the model architecture. |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
|
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `InfiniteVLTextConfig`): |
|
|
The config object or dictionary of the text backbone. |
|
|
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `InfiniteVLVisionConfig`): |
|
|
The config object or dictionary of the vision backbone. |
|
|
image_token_id (`int`, *optional*, defaults to 151655): |
|
|
The image token index to encode the image prompt. |
|
|
video_token_id (`int`, *optional*, defaults to 151656): |
|
|
The video token index to encode the video prompt. |
|
|
vision_start_token_id (`int`, *optional*, defaults to 151652): |
|
|
The token index to denote start of vision input. |
|
|
vision_end_token_id (`int`, *optional*, defaults to 151653): |
|
|
The token index to denote end of vision input. |
|
|
|
|
|
```python |
|
|
>>> from transformers import InfiniteVLQwen2_5_VLForConditionalGeneration, InfiniteVLConfig |
|
|
|
|
|
>>> # Initializing an InfiniteVL style configuration |
|
|
>>> configuration = InfiniteVLConfig() |
|
|
|
|
|
>>> # Initializing a model from the InfiniteVL style configuration |
|
|
>>> model = InfiniteVLQwen2_5_VLForConditionalGeneration(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "infinite_vl" |
|
|
sub_configs = {"vision_config": InfiniteVLVisionConfig, "text_config": InfiniteVLTextConfig} |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
text_config=None, |
|
|
vision_config=None, |
|
|
image_token_id=151655, |
|
|
video_token_id=151656, |
|
|
vision_start_token_id=151652, |
|
|
vision_end_token_id=151653, |
|
|
**kwargs, |
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
if isinstance(vision_config, dict): |
|
|
self.vision_config = self.sub_configs["vision_config"](**vision_config) |
|
|
elif vision_config is None: |
|
|
self.vision_config = self.sub_configs["vision_config"]() |
|
|
|
|
|
if isinstance(text_config, dict): |
|
|
self.text_config = self.sub_configs["text_config"](**text_config) |
|
|
elif text_config is None: |
|
|
|
|
|
self.text_config = self.sub_configs["text_config"](**kwargs) |
|
|
|
|
|
self.image_token_id = image_token_id |
|
|
self.video_token_id = video_token_id |
|
|
self.vision_start_token_id = vision_start_token_id |
|
|
self.vision_end_token_id = vision_end_token_id |
|
|
|
|
|
|
|
|
self._attn_implementation = kwargs.pop("attn_implementation", None) |
|
|
|
|
|
def __setattr__(self, key, value): |
|
|
if ( |
|
|
(text_config := super().__getattribute__("__dict__").get("text_config")) is not None |
|
|
and key not in ["dtype", "_attn_implementation_internal"] |
|
|
and key in text_config.__dict__ |
|
|
): |
|
|
setattr(text_config, key, value) |
|
|
else: |
|
|
super().__setattr__(key, value) |
|
|
|
|
|
def __getattribute__(self, key): |
|
|
if "text_config" in super().__getattribute__("__dict__") and key not in [ |
|
|
"dtype", |
|
|
"_attn_implementation_internal", |
|
|
]: |
|
|
text_config = super().__getattribute__("text_config") |
|
|
if key in text_config.__dict__: |
|
|
return getattr(text_config, key) |
|
|
|
|
|
return super().__getattribute__(key) |
|
|
|
|
|
|
|
|
__all__ = ["InfiniteVLConfig", "InfiniteVLTextConfig", "InfiniteVLVisionConfig"] |