InfiniteVL-LongSFT / configuration_infinitevl.py
HongyuanTao's picture
Upload 15 files
bd7c462 verified
# coding=utf-8
# Copyright 2025 The HustVL Team.
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on Qwen2.5-VL, which is derived from EleutherAI's GPT-NeoX library
# and the GPT-NeoX and OPT implementations. It has been modified to create InfiniteVL.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
from transformers.modeling_rope_utils import rope_config_validation
class InfiniteVLVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InfiniteVLVisionModel`].
Args:
depth (`int`, *optional*, defaults to 32):
The number of layers in the vision transformer.
hidden_size (`int`, *optional*, defaults to 3584):
Dimensionality of the encoder layers and the pooler layer.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the encoder and pooler.
intermediate_size (`int`, *optional*, defaults to 3420):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
in_channels (`int`, *optional*, defaults to 3):
Number of input channels.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
spatial_merge_size (`int`, *optional*, defaults to 2):
The scaling factor for spatial merging of patches.
temporal_patch_size (`int`, *optional*, defaults to 2):
The size of patches along the temporal dimension.
tokens_per_second (`int`, *optional*, defaults to 4):
Number of tokens processed per second for video inputs.
window_size (`int`, *optional*, defaults to 112):
The window size for windowed attention mechanisms.
out_hidden_size (`int`, *optional*, defaults to 3584):
Dimensionality of the output hidden states.
fullatt_block_indexes (`list`, *optional*):
Indices of blocks that use full attention instead of windowed attention.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
"""
model_type = "infinite_vl"
base_config_key = "vision_config"
def __init__(
self,
depth=32,
hidden_size=3584,
hidden_act="silu",
intermediate_size=3420,
num_heads=16,
in_channels=3,
patch_size=14,
spatial_merge_size=2,
temporal_patch_size=2,
tokens_per_second=4,
window_size=112,
out_hidden_size=3584,
fullatt_block_indexes=None,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
if fullatt_block_indexes is None:
fullatt_block_indexes = [7, 15, 23, 31]
self.depth = depth
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.num_heads = num_heads
self.in_channels = in_channels
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.temporal_patch_size = temporal_patch_size
self.tokens_per_second = tokens_per_second
self.window_size = window_size
self.fullatt_block_indexes = fullatt_block_indexes
self.out_hidden_size = out_hidden_size
self.initializer_range = initializer_range
class InfiniteVLTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InfiniteVLTextModel`]. It is used to instantiate an
InfiniteVL model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 152064):
Vocabulary size of the InfiniteVL model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`InfiniteVLModel`]
hidden_size (`int`, *optional*, defaults to 8192):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 29568):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 80):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 32768):
Sliding window attention (SWA) window size.
max_window_layers (`int`, *optional*, defaults to 80):
The number of layers using full attention. The first `max_window_layers` layers will use full attention, while any
additional layer afterwards will use SWA (Sliding Window Attention).
layer_types (`list`, *optional*):
Attention pattern for each layer.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
expand_v (`float`, *optional*, defaults to 2):
Expansion factor for the value dimension in the linear attention/DeltaNet layer.
mode (`str`, *optional*, defaults to `"chunk"`):
Execution mode for the linear attention layer (e.g., "chunk" or "fused_recurrent").
use_gate (`bool`, *optional*, defaults to `True`):
Whether to use the gating mechanism in the DeltaNet layer.
use_short_conv (`bool`, *optional*, defaults to `True`):
Whether to use short convolution in the linear attention layer.
conv_size (`int`, *optional*, defaults to 4):
Kernel size for the short convolution.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in the short convolution.
num_linear_key_value_heads (`int`, *optional*, defaults to 16):
Number of key/value heads used in the linear attention layers.
num_linear_heads (`int`, *optional*, defaults to 16):
Number of query heads used in the linear attention layers.
linear_head_dim (`int`, *optional*, defaults to 128):
Dimension of each head in the linear attention layers.
norm_eps (`float`, *optional*, defaults to 1e-5):
Epsilon value for normalization layers in the linear attention branch.
```python
>>> from transformers import InfiniteVLTextModel, InfiniteVLConfig
>>> # Initializing an InfiniteVL style configuration
>>> configuration = InfiniteVLConfig()
>>> # Initializing a model from the InfiniteVL style configuration
>>> model = InfiniteVLTextModel(configuration.text_config)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "infinite_vl_text"
base_config_key = "text_config"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `InfiniteVL`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=152064,
hidden_size=8192,
intermediate_size=29568,
num_hidden_layers=80,
num_attention_heads=64,
num_key_value_heads=8,
head_dim=128,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-05,
norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=1000000.0,
use_sliding_window=False,
sliding_window=32768,
max_window_layers=80,
layer_types=None,
attention_dropout=0.0,
rope_scaling=None,
expand_v: float = 2,
mode: str = "chunk",
use_gate: bool = True,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
num_linear_key_value_heads: int = 16,
num_linear_heads: int = 16,
linear_head_dim: int = 128,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if self.use_sliding_window else None
self.max_window_layers = max_window_layers
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.rope_scaling = rope_scaling
# DeltaNet / linear branch
self.expand_v = expand_v
self.mode = mode
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.num_linear_key_value_heads = num_linear_key_value_heads
self.num_linear_heads = num_linear_heads
self.linear_head_dim = linear_head_dim
self.norm_eps = norm_eps
self.layer_types = layer_types
if self.layer_types is None:
# Default: one sliding_attention layer followed by three linear_attention layers (period = 4)
self.layer_types = [
"linear_attention" if bool(i % 4) else "sliding_attention"
for i in range(self.num_hidden_layers)
]
layer_type_validation(self.layer_types, self.num_hidden_layers)
# Validate the correctness of rotary position embeddings parameters
# Backward Compatibility: if there is a 'type' field, move it to 'rope_type'.
# Also change type from 'mrope' to 'default' because `mrope` uses default RoPE calculations in this architecture.
if self.rope_scaling is not None and "type" in self.rope_scaling:
if self.rope_scaling["type"] == "mrope":
self.rope_scaling["type"] = "default"
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self, ignore_keys={"mrope_section"})
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
class InfiniteVLConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InfiniteVLModel`]. It is used to instantiate an
InfiniteVL model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `InfiniteVLTextConfig`):
The config object or dictionary of the text backbone.
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `InfiniteVLVisionConfig`):
The config object or dictionary of the vision backbone.
image_token_id (`int`, *optional*, defaults to 151655):
The image token index to encode the image prompt.
video_token_id (`int`, *optional*, defaults to 151656):
The video token index to encode the video prompt.
vision_start_token_id (`int`, *optional*, defaults to 151652):
The token index to denote start of vision input.
vision_end_token_id (`int`, *optional*, defaults to 151653):
The token index to denote end of vision input.
```python
>>> from transformers import InfiniteVLQwen2_5_VLForConditionalGeneration, InfiniteVLConfig
>>> # Initializing an InfiniteVL style configuration
>>> configuration = InfiniteVLConfig()
>>> # Initializing a model from the InfiniteVL style configuration
>>> model = InfiniteVLQwen2_5_VLForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "infinite_vl"
sub_configs = {"vision_config": InfiniteVLVisionConfig, "text_config": InfiniteVLTextConfig}
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
text_config=None,
vision_config=None,
image_token_id=151655,
video_token_id=151656,
vision_start_token_id=151652,
vision_end_token_id=151653,
**kwargs,
):
# We need to init super() here so that it does not reset values
# that are in text config to the BaseClass defaults. The Base
# config has many text related defaults and not all defaults are same as for `InfiniteVLTextConfig`
super().__init__(**kwargs)
if isinstance(vision_config, dict):
self.vision_config = self.sub_configs["vision_config"](**vision_config)
elif vision_config is None:
self.vision_config = self.sub_configs["vision_config"]()
if isinstance(text_config, dict):
self.text_config = self.sub_configs["text_config"](**text_config)
elif text_config is None:
# For BC use all kwargs to init `TextConfig`
self.text_config = self.sub_configs["text_config"](**kwargs)
self.image_token_id = image_token_id
self.video_token_id = video_token_id
self.vision_start_token_id = vision_start_token_id
self.vision_end_token_id = vision_end_token_id
# Attention implementation to use. It sets it recursively on sub-configs so we call it again in the end
self._attn_implementation = kwargs.pop("attn_implementation", None)
def __setattr__(self, key, value):
if (
(text_config := super().__getattribute__("__dict__").get("text_config")) is not None
and key not in ["dtype", "_attn_implementation_internal"]
and key in text_config.__dict__
):
setattr(text_config, key, value)
else:
super().__setattr__(key, value)
def __getattribute__(self, key):
if "text_config" in super().__getattribute__("__dict__") and key not in [
"dtype",
"_attn_implementation_internal",
]:
text_config = super().__getattribute__("text_config")
if key in text_config.__dict__:
return getattr(text_config, key)
return super().__getattribute__(key)
__all__ = ["InfiniteVLConfig", "InfiniteVLTextConfig", "InfiniteVLVisionConfig"]