hussamalafandi commited on
Commit
b43d000
1 Parent(s): df17966

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1984.05 +/- 54.97
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9800ca05ef8d920bb6c4eb475df6076eb1fd8a6d390357192bae9d0f7da0193c
3
+ size 129277
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23f0ddcc10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23f0ddcca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23f0ddcd30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23f0ddcdc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f23f0ddce50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f23f0ddcee0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23f0ddcf70>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23f0de1040>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23f0de10d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23f0de1160>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23f0de11f0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23f0de1280>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f23f0ddfcc0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1681393205616641602,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2h1c3NhbS9taW5pY29uZGEzL2VudnMvaGYtY291cnNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9odXNzYW0vbWluaWNvbmRhMy9lbnZzL2hmLWNvdXJzZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIH9jD5L3hu/K7kAPGUsgj8svZ6/6EroPlSH370+law+8UOXv+DmRj9brqM+qsYwP4iPGb+qdg8+IhqGvnT+C0Cn7qQ/B/GNvzA0cb9mJzu/bjplvyrxujztx9s+YB4QP2oYJD8NrYw+quEhP2d6U79y1JM/rXwQv9lgeT16PmU/YOZkv1vxL8CI9T8+O0DzvYd48T5ZqP2/cpkPPlCB5j7J/wU+N8EXPzCdRL+t682/SteLv5vDiz8IOLY8xLUJQG4Aoj6uFky/bVQMPz5vOr5SsMe/Da2MPm9ryr9nelO/+1aPP8GyHb9BBnO6HEiFP/NaNcCANuY/lUk0v6ssgr8leSU/xRXIP0Jurj96VBe/3eixvSM0Er8HHBM/YtjXPBfWVr5zU5+/rGJov5IZvr2ALeu+R/imPvGJ4T+Jy+K+ahgkPw2tjD6q4SE/Z3pTv9wgnT9otnw+iyIsPxIoUr/HyOC+fkR4vyBX875pZYG//gGsP7t2N7/3Ves/8DYmv0oTFD87Vhq/KEu9Pseukb++hei/6f0nORXewD5Q0rM/zrhKP5cvTL8LqPg+DOPuv2oYJD8NrYw+quEhP2d6U7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD4qjK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJjbNPQAAAAD4lPm/AAAAAEoMIz0AAAAAXiDaPwAAAABynxG+AAAAAEU+/z8AAAAAF/PBvQAAAABSytq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/K8StgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD9KJz0AAAAADyXtvwAAAACniAm+AAAAANiH4z8AAAAAhX+mPAAAAADYWf4/AAAAAJgcZr0AAAAACMz1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADstTzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnuke8AAAAACJI9r8AAAAAtXF0uwAAAADdOdw/AAAAAL1y070AAAAAJ9ntPwAAAACHwAy+AAAAAEBy4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4MQU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAagJWvQAAAADOCue/AAAAAOy+Ab4AAAAAvsH+PwAAAAB58d49AAAAAA1E+z8AAAAAju9JvQAAAABACeG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfT07ZFocuMAWyUTegDjAF0lEdApQm31+RYBHV9lChoBkdAmSgwXAM2FWgHTegDaAhHQKUK2Fg2Ift1fZQoaAZHQJC+rQu27WdoB03oA2gIR0ClC4Lidat+dX2UKGgGR0CQwBKWLP2PaAdN6ANoCEdApQxCTwDvE3V9lChoBkdAmB1yCBf8dmgHTegDaAhHQKUUMeQuEmJ1fZQoaAZHQJYPSzsyBTZoB03oA2gIR0ClFYmfwqiHdX2UKGgGR0CYIjuGbkOqaAdN6ANoCEdApRZOoNutOnV9lChoBkdAmEZ9To+wDGgHTegDaAhHQKUXIwL3K0V1fZQoaAZHQIl0tvQ4S6FoB03oA2gIR0ClH8jNyHVPdX2UKGgGR0CX30d8iOebaAdN6ANoCEdApSEXDm8ujHV9lChoBkdAi0PJZ4fOlmgHTegDaAhHQKUiB+hGpdd1fZQoaAZHQJO59LPD50toB03oA2gIR0ClIxC/wiJPdX2UKGgGR0CWQD/JNj9XaAdN6ANoCEdApSrY6Mir1nV9lChoBkdAkE0cQNCqqGgHTegDaAhHQKUsGP7vXsh1fZQoaAZHQJY0Yq2BretoB03oA2gIR0ClLM+cx0uEdX2UKGgGR0CYmn9kjHGTaAdN6ANoCEdApS2rHS4OMHV9lChoBkdAmR3shPj4pWgHTegDaAhHQKU1sOyVv/B1fZQoaAZHQJXUcU8FINFoB03oA2gIR0ClNvABDG96dX2UKGgGR0CW+KD/EOy3aAdN6ANoCEdApTelTzd1uHV9lChoBkdAmpyhWT5ft2gHTegDaAhHQKU4cs3AEdN1fZQoaAZHQJee09Mbm2doB03oA2gIR0ClQJcYIjW1dX2UKGgGR0CZACq9GqgiaAdN6ANoCEdApUHJg7YChnV9lChoBkdAl3zZ3kgfVGgHTegDaAhHQKVCeCPp6hR1fZQoaAZHQJlF1nDiwStoB03oA2gIR0ClQ0cD0UXYdX2UKGgGR0CTFsBbfP5YaAdN6ANoCEdApUtGhM8HOnV9lChoBkdAlruzL0SRKmgHTegDaAhHQKVMfxCpm291fZQoaAZHQJI2wrz5GjNoB03oA2gIR0ClTTlYU34sdX2UKGgGR0CYDBbRWtEHaAdN6ANoCEdApU3+RxLkCHV9lChoBkdAnAMn6VMVUWgHTegDaAhHQKVVn4A0bcZ1fZQoaAZHQJw0hdJJ5FBoB03oA2gIR0ClVtK+i8FqdX2UKGgGR0CYtN6Zpi7TaAdN6ANoCEdApVeBML4N7XV9lChoBkdAnE4mM85jpmgHTegDaAhHQKVYVjPv8ZV1fZQoaAZHQJyjwdELH+9oB03oA2gIR0ClYC9MCcPOdX2UKGgGR0Cb02tga3qiaAdN6ANoCEdApWFVcfNiY3V9lChoBkdAm5hbMHKOk2gHTegDaAhHQKViBFNtZV51fZQoaAZHQJxho4gieNFoB03oA2gIR0ClYssOwxFidX2UKGgGR0CV3pood+5OaAdN6ANoCEdApWrBvNu+AXV9lChoBkdAnaBEX+ERJ2gHTegDaAhHQKVr+fmLcbl1fZQoaAZHQJvE4yeqaPVoB03oA2gIR0ClbLAvL5h0dX2UKGgGR0Cc5jcry1/laAdN6ANoCEdApW18YEW69XV9lChoBkdAnKYRQFcIJWgHTegDaAhHQKV1O8ujASF1fZQoaAZHQJ2w0aOxSpBoB03oA2gIR0CldnLg4wRHdX2UKGgGR0Cb1RdxAB1caAdN6ANoCEdApXcyWC2+f3V9lChoBkdAlwTfM8ox6GgHTegDaAhHQKV39a7EpAl1fZQoaAZHQJhqE/fO2RdoB03oA2gIR0Clf6/NRm9QdX2UKGgGR0CZdxutwJgLaAdN6ANoCEdApYDouPFNtnV9lChoBkdAmKcGY8dPtWgHTegDaAhHQKWBnVYp2EF1fZQoaAZHQJc3PVG0/npoB03oA2gIR0ClgmY8Md92dX2UKGgGR0CTXsYpUgjhaAdN6ANoCEdApYodTkyULXV9lChoBkdAmP2VW8yvcWgHTegDaAhHQKWLTbOeJ551fZQoaAZHQJyL7DgqEvloB03oA2gIR0CljAA62fCidX2UKGgGR0CZPzkUsWfsaAdN6ANoCEdApYzKCxu89XV9lChoBkdAmW1FSOzY3GgHTegDaAhHQKWUru+h4+t1fZQoaAZHQJrlK/20zCVoB03oA2gIR0Clld0KRdQgdX2UKGgGR0CZV1schkiEaAdN6ANoCEdApZaOKEWZZ3V9lChoBkdAmsatVNpM6GgHTegDaAhHQKWXVg1FYuF1fZQoaAZHQJooPXe3x4JoB03oA2gIR0Clnx+RxLkCdX2UKGgGR0CZVsie/YapaAdN6ANoCEdApaBMfzSThnV9lChoBkdAmfui7K7qZGgHTegDaAhHQKWhC2FWXC11fZQoaAZHQJmWFog3cYZoB03oA2gIR0ClodHRkVesdX2UKGgGR0CXHTrdnCfpaAdN6ANoCEdApamTwpe/pXV9lChoBkdAmflGJm/WUmgHTegDaAhHQKWqwx6fJ3h1fZQoaAZHQJjWexrzoU1oB03oA2gIR0Clq3OjZcs2dX2UKGgGR0CYZPTgEU0vaAdN6ANoCEdApaw40uUUwnV9lChoBkdAmGWQwoLG72gHTegDaAhHQKW0JaiblRx1fZQoaAZHQJktsm6XjVBoB03oA2gIR0CltU2kzoECdX2UKGgGR0CaFSdYW+GoaAdN6ANoCEdApbX/QSi/PHV9lChoBkdAmrlkbo8p1GgHTegDaAhHQKW2yN3GGVR1fZQoaAZHQJpNOX3QD3doB03oA2gIR0ClvqlpPAO8dX2UKGgGR0CY7RCT2WY4aAdN6ANoCEdApb/YOOKfnXV9lChoBkdAmq7p4wAU+WgHTegDaAhHQKXAkUYbbUR1fZQoaAZHQJsAS05U96loB03oA2gIR0ClwVmz0HyFdX2UKGgGR0Ccu7tA9mpVaAdN6ANoCEdApckltCRfW3V9lChoBkdAnGmMt03fh2gHTegDaAhHQKXKWws5GSZ1fZQoaAZHQJwy9qoIfKZoB03oA2gIR0ClyxYdp7C0dX2UKGgGR0CcJbXPZ7HAaAdN6ANoCEdApcvjHS4OMHV9lChoBkdAnIftU83dbmgHTegDaAhHQKXUMf8uSOl1fZQoaAZHQJwt/Pw/gR9oB03oA2gIR0Cl1XqTKT0QdX2UKGgGR0CcesTM7lq8aAdN6ANoCEdApdYru6VdHHV9lChoBkdAmucc7QswtmgHTegDaAhHQKXW+afBeol1fZQoaAZHQJwslXxOLzhoB03oA2gIR0Cl3z8uJ1q4dX2UKGgGR0CcDCuA7PpqaAdN6ANoCEdApeBnXkHUt3V9lChoBkdAnJrZxNqQBGgHTegDaAhHQKXhFt8/lhh1fZQoaAZHQJ0u7/cWTHNoB03oA2gIR0Cl4d36qKgqdX2UKGgGR0Cb/F1rZamoaAdN6ANoCEdApem3IXCTEHV9lChoBkdAnWkgsf7rLWgHTegDaAhHQKXq4v0yxiZ1fZQoaAZHQJ1sbaRISUVoB03oA2gIR0Cl641y/9HddX2UKGgGR0Cbxq/Zdv87aAdN6ANoCEdApexUqYqoZXV9lChoBkdAnh2rVz6rNmgHTegDaAhHQKX0Ere67NB1fZQoaAZHQJ1iWGYa5wxoB03oA2gIR0Cl9UBttQ9BdX2UKGgGR0CbPLay8jA0aAdN6ANoCEdApfX58neBQXV9lChoBkdAnVV+df9gnmgHTegDaAhHQKX2wNMoMKF1fZQoaAZHQJxy+szVMEloB03oA2gIR0Cl/qQQUYbbdX2UKGgGR0Cc10nkDIRzaAdN6ANoCEdApf/sGmk30nV9lChoBkdAm9LFeSjgymgHTegDaAhHQKYAs2xY7q91fZQoaAZHQJ1aDLpzLfVoB03oA2gIR0CmAZC1qnFYdX2UKGgGR0Cbe4Cwr1/UaAdN6ANoCEdApgleNDMNdHV9lChoBkdAm8j6D0163WgHTegDaAhHQKYKlOSntOV1fZQoaAZHQJ3AbT1CgK5oB03oA2gIR0CmC0oEr5IpdX2UKGgGR0CdDmQo1DSgaAdN6ANoCEdApgwOxIJ7cHVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45e1ae56b85ef6e3e8df2771b1846820ff44a3e97a729a64f167e77097322ec2
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e0bbae39be06b76dc3efd1800bd580175f6b8c5496220426972a9f6c44c3711
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-38-generic-x86_64-with-glibc2.35 # 39~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 1.11.0+cu102
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.2
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23f0ddcc10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23f0ddcca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23f0ddcd30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23f0ddcdc0>", "_build": "<function ActorCriticPolicy._build at 0x7f23f0ddce50>", "forward": "<function ActorCriticPolicy.forward at 0x7f23f0ddcee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23f0ddcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23f0de1040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23f0de10d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23f0de1160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23f0de11f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23f0de1280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23f0ddfcc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681393205616641602, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2h1c3NhbS9taW5pY29uZGEzL2VudnMvaGYtY291cnNlL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGQvaG9tZS9odXNzYW0vbWluaWNvbmRhMy9lbnZzL2hmLWNvdXJzZS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAIH9jD5L3hu/K7kAPGUsgj8svZ6/6EroPlSH370+law+8UOXv+DmRj9brqM+qsYwP4iPGb+qdg8+IhqGvnT+C0Cn7qQ/B/GNvzA0cb9mJzu/bjplvyrxujztx9s+YB4QP2oYJD8NrYw+quEhP2d6U79y1JM/rXwQv9lgeT16PmU/YOZkv1vxL8CI9T8+O0DzvYd48T5ZqP2/cpkPPlCB5j7J/wU+N8EXPzCdRL+t682/SteLv5vDiz8IOLY8xLUJQG4Aoj6uFky/bVQMPz5vOr5SsMe/Da2MPm9ryr9nelO/+1aPP8GyHb9BBnO6HEiFP/NaNcCANuY/lUk0v6ssgr8leSU/xRXIP0Jurj96VBe/3eixvSM0Er8HHBM/YtjXPBfWVr5zU5+/rGJov5IZvr2ALeu+R/imPvGJ4T+Jy+K+ahgkPw2tjD6q4SE/Z3pTv9wgnT9otnw+iyIsPxIoUr/HyOC+fkR4vyBX875pZYG//gGsP7t2N7/3Ves/8DYmv0oTFD87Vhq/KEu9Pseukb++hei/6f0nORXewD5Q0rM/zrhKP5cvTL8LqPg+DOPuv2oYJD8NrYw+quEhP2d6U7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD4qjK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJjbNPQAAAAD4lPm/AAAAAEoMIz0AAAAAXiDaPwAAAABynxG+AAAAAEU+/z8AAAAAF/PBvQAAAABSytq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/K8StgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgD9KJz0AAAAADyXtvwAAAACniAm+AAAAANiH4z8AAAAAhX+mPAAAAADYWf4/AAAAAJgcZr0AAAAACMz1vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADstTzUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnuke8AAAAACJI9r8AAAAAtXF0uwAAAADdOdw/AAAAAL1y070AAAAAJ9ntPwAAAACHwAy+AAAAAEBy4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4MQU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAagJWvQAAAADOCue/AAAAAOy+Ab4AAAAAvsH+PwAAAAB58d49AAAAAA1E+z8AAAAAju9JvQAAAABACeG/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfT07ZFocuMAWyUTegDjAF0lEdApQm31+RYBHV9lChoBkdAmSgwXAM2FWgHTegDaAhHQKUK2Fg2Ift1fZQoaAZHQJC+rQu27WdoB03oA2gIR0ClC4Lidat+dX2UKGgGR0CQwBKWLP2PaAdN6ANoCEdApQxCTwDvE3V9lChoBkdAmB1yCBf8dmgHTegDaAhHQKUUMeQuEmJ1fZQoaAZHQJYPSzsyBTZoB03oA2gIR0ClFYmfwqiHdX2UKGgGR0CYIjuGbkOqaAdN6ANoCEdApRZOoNutOnV9lChoBkdAmEZ9To+wDGgHTegDaAhHQKUXIwL3K0V1fZQoaAZHQIl0tvQ4S6FoB03oA2gIR0ClH8jNyHVPdX2UKGgGR0CX30d8iOebaAdN6ANoCEdApSEXDm8ujHV9lChoBkdAi0PJZ4fOlmgHTegDaAhHQKUiB+hGpdd1fZQoaAZHQJO59LPD50toB03oA2gIR0ClIxC/wiJPdX2UKGgGR0CWQD/JNj9XaAdN6ANoCEdApSrY6Mir1nV9lChoBkdAkE0cQNCqqGgHTegDaAhHQKUsGP7vXsh1fZQoaAZHQJY0Yq2BretoB03oA2gIR0ClLM+cx0uEdX2UKGgGR0CYmn9kjHGTaAdN6ANoCEdApS2rHS4OMHV9lChoBkdAmR3shPj4pWgHTegDaAhHQKU1sOyVv/B1fZQoaAZHQJXUcU8FINFoB03oA2gIR0ClNvABDG96dX2UKGgGR0CW+KD/EOy3aAdN6ANoCEdApTelTzd1uHV9lChoBkdAmpyhWT5ft2gHTegDaAhHQKU4cs3AEdN1fZQoaAZHQJee09Mbm2doB03oA2gIR0ClQJcYIjW1dX2UKGgGR0CZACq9GqgiaAdN6ANoCEdApUHJg7YChnV9lChoBkdAl3zZ3kgfVGgHTegDaAhHQKVCeCPp6hR1fZQoaAZHQJlF1nDiwStoB03oA2gIR0ClQ0cD0UXYdX2UKGgGR0CTFsBbfP5YaAdN6ANoCEdApUtGhM8HOnV9lChoBkdAlruzL0SRKmgHTegDaAhHQKVMfxCpm291fZQoaAZHQJI2wrz5GjNoB03oA2gIR0ClTTlYU34sdX2UKGgGR0CYDBbRWtEHaAdN6ANoCEdApU3+RxLkCHV9lChoBkdAnAMn6VMVUWgHTegDaAhHQKVVn4A0bcZ1fZQoaAZHQJw0hdJJ5FBoB03oA2gIR0ClVtK+i8FqdX2UKGgGR0CYtN6Zpi7TaAdN6ANoCEdApVeBML4N7XV9lChoBkdAnE4mM85jpmgHTegDaAhHQKVYVjPv8ZV1fZQoaAZHQJyjwdELH+9oB03oA2gIR0ClYC9MCcPOdX2UKGgGR0Cb02tga3qiaAdN6ANoCEdApWFVcfNiY3V9lChoBkdAm5hbMHKOk2gHTegDaAhHQKViBFNtZV51fZQoaAZHQJxho4gieNFoB03oA2gIR0ClYssOwxFidX2UKGgGR0CV3pood+5OaAdN6ANoCEdApWrBvNu+AXV9lChoBkdAnaBEX+ERJ2gHTegDaAhHQKVr+fmLcbl1fZQoaAZHQJvE4yeqaPVoB03oA2gIR0ClbLAvL5h0dX2UKGgGR0Cc5jcry1/laAdN6ANoCEdApW18YEW69XV9lChoBkdAnKYRQFcIJWgHTegDaAhHQKV1O8ujASF1fZQoaAZHQJ2w0aOxSpBoB03oA2gIR0CldnLg4wRHdX2UKGgGR0Cb1RdxAB1caAdN6ANoCEdApXcyWC2+f3V9lChoBkdAlwTfM8ox6GgHTegDaAhHQKV39a7EpAl1fZQoaAZHQJhqE/fO2RdoB03oA2gIR0Clf6/NRm9QdX2UKGgGR0CZdxutwJgLaAdN6ANoCEdApYDouPFNtnV9lChoBkdAmKcGY8dPtWgHTegDaAhHQKWBnVYp2EF1fZQoaAZHQJc3PVG0/npoB03oA2gIR0ClgmY8Md92dX2UKGgGR0CTXsYpUgjhaAdN6ANoCEdApYodTkyULXV9lChoBkdAmP2VW8yvcWgHTegDaAhHQKWLTbOeJ551fZQoaAZHQJyL7DgqEvloB03oA2gIR0CljAA62fCidX2UKGgGR0CZPzkUsWfsaAdN6ANoCEdApYzKCxu89XV9lChoBkdAmW1FSOzY3GgHTegDaAhHQKWUru+h4+t1fZQoaAZHQJrlK/20zCVoB03oA2gIR0Clld0KRdQgdX2UKGgGR0CZV1schkiEaAdN6ANoCEdApZaOKEWZZ3V9lChoBkdAmsatVNpM6GgHTegDaAhHQKWXVg1FYuF1fZQoaAZHQJooPXe3x4JoB03oA2gIR0Clnx+RxLkCdX2UKGgGR0CZVsie/YapaAdN6ANoCEdApaBMfzSThnV9lChoBkdAmfui7K7qZGgHTegDaAhHQKWhC2FWXC11fZQoaAZHQJmWFog3cYZoB03oA2gIR0ClodHRkVesdX2UKGgGR0CXHTrdnCfpaAdN6ANoCEdApamTwpe/pXV9lChoBkdAmflGJm/WUmgHTegDaAhHQKWqwx6fJ3h1fZQoaAZHQJjWexrzoU1oB03oA2gIR0Clq3OjZcs2dX2UKGgGR0CYZPTgEU0vaAdN6ANoCEdApaw40uUUwnV9lChoBkdAmGWQwoLG72gHTegDaAhHQKW0JaiblRx1fZQoaAZHQJktsm6XjVBoB03oA2gIR0CltU2kzoECdX2UKGgGR0CaFSdYW+GoaAdN6ANoCEdApbX/QSi/PHV9lChoBkdAmrlkbo8p1GgHTegDaAhHQKW2yN3GGVR1fZQoaAZHQJpNOX3QD3doB03oA2gIR0ClvqlpPAO8dX2UKGgGR0CY7RCT2WY4aAdN6ANoCEdApb/YOOKfnXV9lChoBkdAmq7p4wAU+WgHTegDaAhHQKXAkUYbbUR1fZQoaAZHQJsAS05U96loB03oA2gIR0ClwVmz0HyFdX2UKGgGR0Ccu7tA9mpVaAdN6ANoCEdApckltCRfW3V9lChoBkdAnGmMt03fh2gHTegDaAhHQKXKWws5GSZ1fZQoaAZHQJwy9qoIfKZoB03oA2gIR0ClyxYdp7C0dX2UKGgGR0CcJbXPZ7HAaAdN6ANoCEdApcvjHS4OMHV9lChoBkdAnIftU83dbmgHTegDaAhHQKXUMf8uSOl1fZQoaAZHQJwt/Pw/gR9oB03oA2gIR0Cl1XqTKT0QdX2UKGgGR0CcesTM7lq8aAdN6ANoCEdApdYru6VdHHV9lChoBkdAmucc7QswtmgHTegDaAhHQKXW+afBeol1fZQoaAZHQJwslXxOLzhoB03oA2gIR0Cl3z8uJ1q4dX2UKGgGR0CcDCuA7PpqaAdN6ANoCEdApeBnXkHUt3V9lChoBkdAnJrZxNqQBGgHTegDaAhHQKXhFt8/lhh1fZQoaAZHQJ0u7/cWTHNoB03oA2gIR0Cl4d36qKgqdX2UKGgGR0Cb/F1rZamoaAdN6ANoCEdApem3IXCTEHV9lChoBkdAnWkgsf7rLWgHTegDaAhHQKXq4v0yxiZ1fZQoaAZHQJ1sbaRISUVoB03oA2gIR0Cl641y/9HddX2UKGgGR0Cbxq/Zdv87aAdN6ANoCEdApexUqYqoZXV9lChoBkdAnh2rVz6rNmgHTegDaAhHQKX0Ere67NB1fZQoaAZHQJ1iWGYa5wxoB03oA2gIR0Cl9UBttQ9BdX2UKGgGR0CbPLay8jA0aAdN6ANoCEdApfX58neBQXV9lChoBkdAnVV+df9gnmgHTegDaAhHQKX2wNMoMKF1fZQoaAZHQJxy+szVMEloB03oA2gIR0Cl/qQQUYbbdX2UKGgGR0Cc10nkDIRzaAdN6ANoCEdApf/sGmk30nV9lChoBkdAm9LFeSjgymgHTegDaAhHQKYAs2xY7q91fZQoaAZHQJ1aDLpzLfVoB03oA2gIR0CmAZC1qnFYdX2UKGgGR0Cbe4Cwr1/UaAdN6ANoCEdApgleNDMNdHV9lChoBkdAm8j6D0163WgHTegDaAhHQKYKlOSntOV1fZQoaAZHQJ3AbT1CgK5oB03oA2gIR0CmC0oEr5IpdX2UKGgGR0CdDmQo1DSgaAdN6ANoCEdApgwOxIJ7cHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-38-generic-x86_64-with-glibc2.35 # 39~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 17 21:16:15 UTC 2", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9787a56344db5a4e5344334d80720cd9feceb4215896b240bf5bc6674fbaf22d
3
+ size 1209273
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1984.0465863604331, "std_reward": 54.967816783341966, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-13T16:26:34.878258"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:152340be284f65f2b3ab226f246e3447b0b17e679f7e6ebc94f78a5cc31d3e70
3
+ size 2170