|
import argparse |
|
import datetime |
|
import os |
|
import traceback |
|
|
|
import kornia |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.utils.data import DataLoader |
|
from tqdm.autonotebook import tqdm |
|
|
|
import models |
|
from datasets import LowLightFDataset, LowLightFDatasetEval |
|
from models import PSNR, SSIM, CosineLR |
|
from tools import SingleSummaryWriter |
|
from tools import saver, mutils |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser('Breaking Downing the Darkness') |
|
parser.add_argument('--num_gpus', type=int, default=1, help='number of gpus being used') |
|
parser.add_argument('--num_workers', type=int, default=12, help='num_workers of dataloader') |
|
parser.add_argument('--batch_size', type=int, default=1, help='The number of images per batch among all devices') |
|
parser.add_argument('-m1', '--model1', type=str, default='INet', |
|
help='Model1 Name') |
|
parser.add_argument('-m2', '--model2', type=str, default='NSNet', |
|
help='Model1 Name') |
|
parser.add_argument('-m1w', '--model1_weight', type=str, default=None, |
|
help='Model Name') |
|
|
|
parser.add_argument('--comment', type=str, default='default', |
|
help='Project comment') |
|
parser.add_argument('--graph', action='store_true') |
|
parser.add_argument('--no_sche', action='store_true') |
|
parser.add_argument('--sampling', action='store_true') |
|
|
|
parser.add_argument('--slope', type=float, default=2.) |
|
parser.add_argument('--lr', type=float, default=0.001) |
|
parser.add_argument('--optim', type=str, default='adam', help='select optimizer for training, ' |
|
'suggest using \'admaw\' until the' |
|
' very final stage then switch to \'sgd\'') |
|
parser.add_argument('--num_epochs', type=int, default=500) |
|
parser.add_argument('--val_interval', type=int, default=1, help='Number of epoches between valing phases') |
|
parser.add_argument('--save_interval', type=int, default=500, help='Number of steps between saving') |
|
parser.add_argument('--data_path', type=str, default='./data/LOL', |
|
help='the root folder of dataset') |
|
parser.add_argument('--log_path', type=str, default='logs/') |
|
parser.add_argument('--saved_path', type=str, default='logs/') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
class ModelNSNet(nn.Module): |
|
def __init__(self, model1, model2): |
|
super().__init__() |
|
self.texture_loss = models.MSELoss() |
|
self.model_ianet = model1(in_channels=1, out_channels=1) |
|
self.model_nsnet = model2(in_channels=2, out_channels=1) |
|
|
|
assert opt.model1_weight is not None |
|
self.load_weight(self.model_ianet, opt.model1_weight) |
|
self.model_ianet.eval() |
|
self.eps = 1e-2 |
|
|
|
def load_weight(self, model, weight_pth): |
|
state_dict = torch.load(weight_pth) |
|
ret = model.load_state_dict(state_dict, strict=True) |
|
print(ret) |
|
|
|
def noise_syn(self, illumi, strength): |
|
return torch.exp(-illumi) * strength |
|
|
|
def forward(self, image, image_gt, training=True): |
|
with torch.no_grad(): |
|
image = image.squeeze(0) |
|
texture_in, _, _ = torch.split(kornia.color.rgb_to_ycbcr(image), 1, dim=1) |
|
texture_gt, _, _ = torch.split(kornia.color.rgb_to_ycbcr(image_gt), 1, dim=1) |
|
|
|
texture_in_down = F.interpolate(texture_in, scale_factor=0.5, mode='bicubic', align_corners=True) |
|
illumi = self.model_ianet(texture_in_down) |
|
illumi = F.interpolate(illumi, scale_factor=2, mode='bicubic', align_corners=True) |
|
|
|
attention = self.noise_syn(illumi, strength=0.1) |
|
|
|
noise = torch.normal(mean=0., std=attention) |
|
noisy_gt = torch.clamp(texture_gt + noise, 0., 1.) |
|
|
|
texture_res = self.model_nsnet(torch.cat([noisy_gt, attention], dim=1)) |
|
restor_loss = self.texture_loss(texture_res, texture_gt - noisy_gt) |
|
|
|
texture_ns = noisy_gt + texture_res |
|
|
|
psnr = PSNR(texture_ns, texture_gt) |
|
ssim = SSIM(texture_ns, texture_gt).item() |
|
return noisy_gt, texture_ns, texture_res, illumi, restor_loss, psnr, ssim |
|
|
|
|
|
def train(opt): |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(42) |
|
else: |
|
torch.manual_seed(42) |
|
|
|
|
|
timestamp = mutils.get_formatted_time() |
|
opt.saved_path = opt.saved_path + f'/{opt.comment}/{timestamp}' |
|
opt.log_path = opt.log_path + f'/{opt.comment}/{timestamp}/tensorboard/' |
|
os.makedirs(opt.log_path, exist_ok=True) |
|
os.makedirs(opt.saved_path, exist_ok=True) |
|
|
|
training_params = {'batch_size': opt.batch_size, |
|
'shuffle': True, |
|
'drop_last': True, |
|
'num_workers': opt.num_workers} |
|
|
|
val_params = {'batch_size': 1, |
|
'shuffle': False, |
|
'drop_last': True, |
|
'num_workers': opt.num_workers} |
|
|
|
training_set = LowLightFDataset(os.path.join(opt.data_path, 'train')) |
|
training_generator = DataLoader(training_set, **training_params) |
|
|
|
val_set = LowLightFDatasetEval(os.path.join(opt.data_path, 'eval')) |
|
val_generator = DataLoader(val_set, **val_params) |
|
|
|
model1 = getattr(models, opt.model1) |
|
model2 = getattr(models, opt.model2) |
|
writer = SingleSummaryWriter(opt.log_path + f'/{datetime.datetime.now().strftime("%Y%m%d-%H%M%S")}/') |
|
|
|
model = ModelNSNet(model1, model2) |
|
print(model) |
|
|
|
if opt.num_gpus > 0: |
|
model = model.cuda() |
|
if opt.num_gpus > 1: |
|
model = nn.DataParallel(model) |
|
|
|
if opt.optim == 'adam': |
|
optimizer = torch.optim.Adam(model.model_nsnet.parameters(), opt.lr) |
|
else: |
|
optimizer = torch.optim.SGD(model.model_nsnet.parameters(), opt.lr, momentum=0.9, nesterov=True) |
|
|
|
scheduler = CosineLR(optimizer, opt.lr, opt.num_epochs) |
|
epoch = 0 |
|
step = 0 |
|
model.model_nsnet.train() |
|
|
|
num_iter_per_epoch = len(training_generator) |
|
|
|
try: |
|
for epoch in range(opt.num_epochs): |
|
last_epoch = step // num_iter_per_epoch |
|
if epoch < last_epoch: |
|
continue |
|
|
|
epoch_loss = [] |
|
progress_bar = tqdm(training_generator) |
|
|
|
saver.base_url = os.path.join(opt.saved_path, 'results', '%03d' % epoch) |
|
if not opt.sampling: |
|
for iter, (data, target, name) in enumerate(progress_bar): |
|
if iter < step - last_epoch * num_iter_per_epoch: |
|
progress_bar.update() |
|
continue |
|
try: |
|
if opt.num_gpus == 1: |
|
data = data.cuda() |
|
target = target.cuda() |
|
|
|
optimizer.zero_grad() |
|
|
|
noisy_gt, texture_ns, texture_res, illumi, \ |
|
restor_loss, psnr, ssim = model(data, target, training=True) |
|
|
|
loss = restor_loss |
|
|
|
loss.backward() |
|
optimizer.step() |
|
|
|
epoch_loss.append(float(loss)) |
|
|
|
progress_bar.set_description( |
|
'Step: {}. Epoch: {}/{}. Iteration: {}/{}. restor_loss: {:.5f}, psnr: {:.5f}, ssim: {:.5f}'.format( |
|
step, epoch, opt.num_epochs, iter + 1, num_iter_per_epoch, restor_loss.item(), psnr, |
|
ssim)) |
|
writer.add_scalar('Loss/train', loss, step) |
|
writer.add_scalar('PSNR/train', psnr, step) |
|
writer.add_scalar('SSIM/train', ssim, step) |
|
|
|
|
|
current_lr = optimizer.param_groups[0]['lr'] |
|
writer.add_scalar('learning_rate', current_lr, step) |
|
|
|
step += 1 |
|
|
|
except Exception as e: |
|
print('[Error]', traceback.format_exc()) |
|
print(e) |
|
continue |
|
|
|
if not opt.no_sche: |
|
scheduler.step() |
|
|
|
if epoch % opt.val_interval == 0: |
|
model.model_nsnet.eval() |
|
loss_ls = [] |
|
psnrs = [] |
|
ssims = [] |
|
|
|
for iter, (data, target, name) in enumerate(val_generator): |
|
with torch.no_grad(): |
|
if opt.num_gpus == 1: |
|
data = data.cuda() |
|
target = target.cuda() |
|
|
|
noisy_gt, texture_ns, texture_res, \ |
|
illumi, restor_loss, psnr, ssim = model(data, target, training=False) |
|
texture_gt, _, _ = torch.split(kornia.color.rgb_to_ycbcr(target), 1, dim=1) |
|
|
|
saver.save_image(noisy_gt, name=os.path.splitext(name[0])[0] + '_in') |
|
saver.save_image(texture_ns, name=os.path.splitext(name[0])[0] + '_ns') |
|
saver.save_image(texture_res, name=os.path.splitext(name[0])[0] + '_res') |
|
saver.save_image(illumi, name=os.path.splitext(name[0])[0] + '_ill') |
|
saver.save_image(target, name=os.path.splitext(name[0])[0] + '_gt') |
|
|
|
loss = restor_loss |
|
loss_ls.append(loss.item()) |
|
psnrs.append(psnr) |
|
ssims.append(ssim) |
|
|
|
loss = np.mean(np.array(loss_ls)) |
|
psnr = np.mean(np.array(psnrs)) |
|
ssim = np.mean(np.array(ssims)) |
|
|
|
print( |
|
'Val. Epoch: {}/{}. Loss: {:1.5f}, psnr: {:.5f}, ssim: {:.5f}'.format( |
|
epoch, opt.num_epochs, loss, psnr, ssim)) |
|
writer.add_scalar('Loss/val', loss, step) |
|
writer.add_scalar('PSNR/val', psnr, step) |
|
writer.add_scalar('SSIM/val', ssim, step) |
|
|
|
save_checkpoint(model, f'{opt.model2}_{"%03d" % epoch}_{psnr}_{ssim}_{step}.pth') |
|
|
|
model.model_nsnet.train() |
|
|
|
except KeyboardInterrupt: |
|
save_checkpoint(model, f'{opt.model2}_{epoch}_{step}_keyboardInterrupt.pth') |
|
writer.close() |
|
writer.close() |
|
|
|
|
|
def save_checkpoint(model, name): |
|
if isinstance(model, nn.DataParallel): |
|
torch.save(model.module.model_nsnet.state_dict(), os.path.join(opt.saved_path, name)) |
|
else: |
|
torch.save(model.model_nsnet.state_dict(), os.path.join(opt.saved_path, name)) |
|
|
|
|
|
if __name__ == '__main__': |
|
opt = get_args() |
|
train(opt) |
|
|