Upload PPOBipedalWalker-v3trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +105 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 109.44 +/- 4.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x790f74c875b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790f74c87640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x790f74c876d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790f74c87760>", "_build": "<function ActorCriticPolicy._build at 0x790f74c877f0>", "forward": "<function ActorCriticPolicy.forward at 0x790f74c87880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x790f74c87910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x790f74c879a0>", "_predict": "<function ActorCriticPolicy._predict at 0x790f74c87a30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x790f74c87ac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790f74c87b50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x790f74c87be0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x790f75b4c180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729674377411240743, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQ8AAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADwAAAAAAAOtgyD3F9I89YfrIPMiNkD1ovFW/AACAMwj/ID4AAIC/AAAAAOY1gj9brg6/NlZvP6uqqrEAAIA/ruh6PiTCfT7VUYM+G1OLPpjcmD6GuK4+WgDNPmo5Aj9zPzk/AACAP+0cYT6oOlU7N9JdPbJJdb3nGVO/AAAAs6/ZAD/NQy+/AACAP5Q4jT/vd9o96fgPP/v/f78AAAAADGWSPtYujz7PbY8+jMKTPrQMnT5jJrE+8lnIPg+p7T4Bzxs/AACAPz2lij5mvb89AL2LPYbzkjuvvFW/AFBIOmCC9jxl/ce+AACAP/0NkD8AgPG3VkC/PguMgL8AAIA/GIR/Pg6xgT4JhYY+P7iOPhr2mj7XsKw+04DIPt6+7z5IRhg/xHdrP/L2n73EADs89VoEPc3VwL3uCC2/z5Aov5lvBT/IgPw+AACAP6JEkT8AAAAAvrxkPwDQAj4AAIA/6omPPjgrkT7YP5Y+hmifPmTqrT6vLMQ+GurmPkw9ED+kLUk/AACAPx9Y9zyj8pc84j2/PbhDHr7rFD+/IlF0v1wdeD4AAIA/AAAAAKf0jT9LPmO+6EfEPgIAgD8AAAAAziCePt0coz5LZqs+Mr24Ph32zD7nV+o+/EILP6AvKz8hqV0/AACAP1Pujj2ST0I84+KXPbEyGD0z4VO/AACAsuQcQz/1A6W7AACAP+kwjj+20Jg+pPU8PgIAgL8AAIA/cROjPkWjpj5zAq4+4gK6PvR9yj6cS+Q+j/wEP15kIT9ArFI/AACAPyf+Lz1kGq+8f1giPQhVsjxy4Sm/CsRgPbRhSz79hQA+AACAP8XMlj/Us3w/kxM5PxsAgL8AAAAAt6CEPmm9hT7nook+qFuRPgkunj7HVbE+UdPPPi0iAT+a9jk/AACAP/ZfhD0HnqE9LWlfPXLBMTyxgFa/KuN/v0KplD4HeIw+AAAAAD2ejT8AABy34uw6P9NMQL8AAIA/JE6IPmvaiT6ArY4+BWCXPrsmpT7dSbo+G0fbPnz4CD9YeTk/AACAPwPatT4Yo3u9SgE0PloOxrwNqk2/AIAqtyDVs73XoZw+AACAPxMpiz9304A/5OU3P9f/f78AAAAA+mSCPt/Tgj4hSoY+yIeNPgdZmT63Las+LszIPgwfAT/jATU/AACAP9VCxDyslIC9Elk2Ps9DmD05zk2/JgbYPn4H1z7NAIC/AAAAAHhQhz9y5n8/QAI5P0RHgL8AAIA/vjOMPjyxjz7axJY+xA+iPs6qsz5buc4+35L5Pj8xID9Hd1U/AACAP6Qwy73xG9m8tB/uPclYvz3L6lO/AEjnuN1BXj8L3NI+AACAP59EkT8AAEo2lDFoP6DrHTwAAIA/LKyRPq5Tkz6ke5g+LcehPkGAsD5BF8c+eWDqPh8/Ej+AOUI/AACAP4KMrL2hZj67/eNHPcAcJj3ZGl6/Hzc1v4w3WD/lo38/AACAP5hvkT8Agim4pq1wP7LNjb0AAIA/jeKKPlR2jD7JYJE+cj2aPudGqD5y0L0+hm3fPh6QCz8Ebzw/AACAP3BTZT6OVDC9YWr8PbixK73N+US/WY9xPlDCar7DVn2/AAAAALrJkD8AdA66wjQJP9EMgb8AAAAAMlOBPjmUgz6YMok+BaSSPm38nz5dqbM+rCvRPitAAT/e5i4/AACAP4RKjTyFBFw8a5M+PT+H5L3XvlW/AAAQtNCMAT4AAIC/AAAAADRGkT8AAAAAbF1vP1VV1TIAAAAADuuSPmYKlT5YNps+pw2mPnvgtj5jSM4+nhv0PqnBGj9XM0w/AACAP4TiqT5E60O98aInPnZGybwMwk2/QH05PKCFX754tn4/AAAAAD08iT/INX8/uMjLPr4bgb8AAIA/ljN6Pp38eT4w1n8+WoSGPvFGkj5fs6Q+ZufAPuQG6T5j8RE/xhJNP26+KTzIZK69ms4YPmaArL2t8zm/BgCAP5TbpD79/3+/AACAP8s8jD9wGdC91pN+PwAAgD8AAAAA9myFPos4iD7J3ow+vnOUPoEonz4tK68+bhnMPjqaAT/zCTo/AACAP6LuXr2c2oK9q22HPc37xD0lKlO/AGBluCHxdD+NYT8/AACAP5EgkT8AAA42IBMjP9CWwD4AAIA/PLOdPreFnz5LLqU+uiiwPkC0wT6gaNs+3pT8Pj/DFj90AEY/AACAP5qKnz2q5wK9ZxQQPncRrb1D0wK/QNBeP4Do9rxgdSE/AAAAAPlffT/CiUu/w3YxP+sjnz8AAIA/rwCZPoG9mj7iJ6A+KOupPuNhuT7jG9E+v634PusyGD9ULFM/AACAPzEwqzzcPvS8C9p+PbMGtDye01O/AKJHOpm7AD8L4YM+AACAP1Fojj8AsBy4hCx5P3Hjfz8AAIA/uxCDPsaNhD7g44k+jCOTPp72oT6JKbc+bhHUPny5AD8ltSo/AACAP8Z1Vz4YWX09PripPX2Rm7vllVK/pXewv7Af1T2t7H8/AACAP5D8hj96pXm/VNv1Pij/fz8AAIA/T4qJPo9yiz5iHpA+Zn+YPlkqpT7NIbo+lvXcPqQzCT8HYzY/AACAP0CSkr2FwQU8saEGvN14C73qfAO//v9/P361lj7rFNe/AACAP5pbhz/meSi/BmZ6P7jsuD8AAAAAdoeWPhc9mD4/EJ8+gOCqPtFAvj63bNw+1yMDP2RlJD+hIVU/AACAP5ShtD7qOmk8yXRVPdcUbL7QXlC/IoulPnzWH79dT6+/AAAAACxAiz9gFdi7zFYGP/v/fz8AAAAACV+GPrDlhz4/p4w+LTqVPtnOoj40pbc+8SzYPjwiCD/+STo/AACAP0SW4DzB0YC8JruaPUlGwz24P06/AAAAMpaJ5T5nTJY+AAAAAOLWjT8AAAAAriddP1v5j70AAIA/AESDPqDBhD4LZ4k+PseRPo8Lnz6hZrM+oCvTPgvoAz/RCjc/AACAP7wh2D4Msa89brZPPayWnr1Cvhy/AQCAv/ipvL77/38/AAAAAMW+YD9Sfgi/AOaiPHX8xz8AAAAA2kSlPlUlpz7c/qw+f4q3Ppo+yD6P3+E+rO8EP440JT85GXA/AACAP7ZFgD3zeqy7VMaXPPbaID0YVlK/xERFPqgfLT6wIH+/AACAP8VIkT8AGq+4HHlvP5Hbq7wAAAAAvrhfPlG4Yj57VGs+2356PjxOiD4Fdpg+JQq0PoNU4T7GQRc/iUhvP0hG8j26jcm7KEOYPWSUQ71gXS6/+imVvnjlXT6Pu4Q+AAAAACoUkD+YqUI/Do7XPgEAgL8AAAAAbMCMPtg7jz46P5U+u4yfPiOIrz7Rs8c+lz3sPmRVEj//E0s/AACAP7nAMz6WhIo99PImPdt/Cr4p4ji/oH09v2DCTL39/38/AAAAAPJ1jj8AAAAAyAkWPwEAgL8AAAAA4dGDPh1RhT6O+4k+306SPpSknz6bm7c+/YzaPlGnBz+ADTQ/AACAP3Kymz8XNcw9QDwBvSFWtL4pKQs/85tbvwCYLr0BAIA/AAAAAH8taz9QsTw/wiITPwAAgL8AAAAA49NtPlCHcD5O8ng+lg+EPlIUkD4KhaI+vUy/Phn97j5eFSQ/AACAP0CjCz7PaI88dQPOPBNhrjxO1Ci/X/fQPrTMAz7Fs7C/AACAP40pkD8AAAAAnJA8P/0rgT8AAAAA4ZGZPo84mz4fN6A+aCqpPiECtz7SNco+Mp7lPo5kCD977zQ/AACAP3czwTulzKC8LxFgPd0upD0S01O/AJDFN7RZ0z7+VZc+AACAP5DBkD8AAOu1jlZvP1XL1rkAAIA/lmqBPgaEgz5aJog+zh6QPvfBmz5vKa0+l9PLPkyu9j4rUB0/I+xbPyLeb72AHe68mkbsPdce+T3tEU6/AN4BOrJhFD8FquY+AAAAAOUZkT8AQCe4lAVvP0vnH7wAAIA/TzCBPtXXgj6j7oY+d1yOPqqNmz4jM7E+YkfYPgEgCj+J7T0/AACAP5EKGr7yMTi9+Ce8vO3QH70s4P4+eMTsPpijGL49f7K+AAAAAFeHWT8CAIA/oMMtvQMAgD8AAAAAmVPmPjjx6D4+GPE+lcr/PvyICz/PZB0/IkQ5P3BzZz8AAIA/AACAP7FH4b136M26UWXDPVrH7z0TflS/4UeUPXxkNj8PwrK+AACAP6BEkT8AAAAAss1oPyTIfr4AAIA/28WIPqJhij6OcY8+lZaYPqN6pz4mnsE+cibvPgH1GT/T/k4/AACAP1DEUj1syYe8dgbAPMpJnD2251S/AK24uYjTuT4zKYU+AAAAAKy1jj8AsIc38hppP9XebrwAAIA/vFZuPsvccj6tXH0+GLqGPs7Ukj42k6U+2lHCPv5p8j5EejE/AACAP1suLj4h08s806AaPiKuI74cWEq/IoJEPmCeAj0DAIC/AAAAALmOeT8BAIC//fo7P3tbsz8AAIA/nd6BPgKAgz6bVYg+o7aQPiXinT4jELU+IpjdPlB0ET+fCEc/AACAP2a5Hr4hAtU5rIPdvMzmEz37ITq/U/EvP7BWEb4pvO4+AAAAABtZBj+jPim7xMUfv4/FmD0AAIA/0V+uPsVasD7NhrY+LKfBPt5G0z5KUe4+nUIMP7w5Lz9VnHA/AACAP8dmjT6f66e6TAd6PQ8sPz2Tyk6/WZMZvwA5G7z9/38/AAAAACj6jT8AAAAABBThvoOIQT8AAIA/6uKLPo6HkD4yEJg+BSWkPgjutT58UNA+qAn2PnrcGT/LVFA/AACAPzWDJz5TZfg9lxnVPewj+btKuh2/uTqgvyj0Kz6ne/o+AACAP7UVfT8AAIC/q+AOP1aplj4AAIA/U/edPiY0oD610aU+t86tPjlyuj5hcM4+VkL0PrzBHD/FEWo/AACAPw3uRD76H0E8VrICvUjfv70SyjS/oPA0P0DT5Tz1/3+/AACAP16ijz8AAAAAskcqPwEAgD8AAAAAdPmDPiN5hT76JIo+wpCSPmrnnz6fXrQ+iE/UPmKeBD/rGjY/AACAP5aUDjvxRFq8NsxSPfPpLzzN0RS/6CRSPyiMpj0BAIC/AAAAAMsEjz8AAAAA5qZjP/z/fz8AAIA/Txl+Pig1gj4o1og+c+eTPpL5pD6Xrb0+zrLhPvNCDz+WT0A/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLKEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVmwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSyiFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAmOy3Td+KMAWyUTUAGjAF0lEdAgqaDRMN+b3V9lChoBkfAWi+xJNCZ4WgHS0doCEdAgqs+PaL4vnV9lChoBkfAROb4+KTB7GgHTUAGaAhHQIKtujM3ZPF1fZQoaAZHwErRt2s7uD1oB01ABmgIR0CCsBG0/nnudX2UKGgGR8Bbaju8brC4aAdLUGgIR0CDESDs+mm+dX2UKGgGR8BJ674SHuZ1aAdNQAZoCEdAgx1NCRfWtnV9lChoBkfASg9m4AjptGgHTUAGaAhHQIMiFzU7SzB1fZQoaAZHwF4bT9KmKqJoB0uNaAhHQIMucxREWqN1fZQoaAZHwEoj3YcvM8poB01ABmgIR0CDL2dXko4NdX2UKGgGR8BbLtUGVzIWaAdLUmgIR0CDNgTs6aLGdX2UKGgGR8BSQEX+ERJ3aAdNQAZoCEdAgzfwYcebNXV9lChoBkfAXLwtCiRGMGgHSz9oCEdAgz1jgZTAFnV9lChoBkfAPqsPOIInjWgHTUAGaAhHQINGAYWLxZx1fZQoaAZHwESWtSQ5myxoB01ABmgIR0CDRwBun/DMdX2UKGgGR8BGJIMrmQr+aAdNQAZoCEdAg0i8fvF3p3V9lChoBkfAR7h4B3iaRmgHTUAGaAhHQINPXiPyTZB1fZQoaAZHwEOOvvjOs1doB01ABmgIR0CDVeAwPAfudX2UKGgGR8BFrOjqOcUeaAdNQAZoCEdAg1nQXZXdTHV9lChoBkfAQBO3KB/ZumgHTUAGaAhHQINaepyZKFt1fZQoaAZHwEIohbnoxHpoB01ABmgIR0CDXPJyQxN7dX2UKGgGR8BGm3jlxOtXaAdNQAZoCEdAg2CO7pV0cXV9lChoBkfAS21C7btZ3mgHTUAGaAhHQINhgHkcS5B1fZQoaAZHwFNyYzzmOlxoB01ABmgIR0CDYkjrzGxVdX2UKGgGR8BDSG8M/hVEaAdNQAZoCEdAg2RQl0HQhXV9lChoBkfAQ3cjC53C9GgHTUAGaAhHQINlSVKPGQ11fZQoaAZHwFvhe2NNrTJoB0tZaAhHQINqJW1c+q11fZQoaAZHwEaN0voNd7hoB01ABmgIR0CDasMF2V3VdX2UKGgGR8BG+g13t8eCaAdNQAZoCEdAg2szZQHiWHV9lChoBkfATteTPjXFtWgHTUAGaAhHQINsV74SHuZ1fZQoaAZHwEHHsIE8q4JoB01ABmgIR0CDbDaKUFB6dX2UKGgGR8BIxh1cMVk+aAdNQAZoCEdAg2zQyZa3Z3V9lChoBkfAQEN+7UXpGGgHTUAGaAhHQINv3qoqCpZ1fZQoaAZHwF0S+TNdJJ5oB0tBaAhHQINyNNxlxwR1fZQoaAZHwEtz5WRzRx9oB01ABmgIR0CDdD3Ux20RdX2UKGgGR8BQO1RxcVxkaAdNQAZoCEdAg9fk0iyIHnV9lChoBkfAPp8sUZeiSWgHTUAGaAhHQIPaHD7655J1fZQoaAZHwEOmAlOXVsloB01ABmgIR0CD2pmOlwcYdX2UKGgGR8BHX16u4gA7aAdNQAZoCEdAg9u7X6InB3V9lChoBkfARjJuQ6p5vGgHTUAGaAhHQIPc2tCAtnR1fZQoaAZHwEdl/DtPYWdoB01ABmgIR0CD4C5Ke05VdX2UKGgGR8BDABYvFm4BaAdNQAZoCEdAg+HtLUTcqXV9lChoBkfAXYzd56dDpmgHS0poCEdAg+NOXu3MIXV9lChoBkfARnkNpdrwfGgHTUAGaAhHQIPpyfFrEcd1fZQoaAZHwF4G0cOskptoB0tTaAhHQIPqtGus90R1fZQoaAZHwEj2O5J9RaZoB01ABmgIR0CD68jEehf0dX2UKGgGR8BESbDuSfUXaAdNQAZoCEdAg/CLlvIfbXV9lChoBkfAXH7omois4mgHS01oCEdAg/DNY0VJtnV9lChoBkfAQzYpUgjhUGgHTUAGaAhHQIPxdyimEXd1fZQoaAZHwEHk4QSSNfhoB01ABmgIR0CD8cqlP8AJdX2UKGgGR8BE2GVqveP8aAdNQAZoCEdAg/NxRuTA33V9lChoBkfASBImG/N7jWgHTUAGaAhHQIP4Blg+hXd1fZQoaAZHwFwYDjR2KVJoB0tpaAhHQIP6Ke/YapB1fZQoaAZHwENnqubI91VoB01ABmgIR0CD+nImw7kodX2UKGgGR8Bdjk7fYSQHaAdLZmgIR0CEAyEHMUypdX2UKGgGR8A/HdAgPmPpaAdNQAZoCEdAhAPbALy+YnV9lChoBkfARG2UhV2ic2gHTUAGaAhHQIQVU89wFTx1fZQoaAZHwEkSFj/dZaFoB01ABmgIR0CEK4SrYGt7dX2UKGgGR8BG6RlQMx46aAdNQAZoCEdAhDPoznA6+3V9lChoBkfAQHy6pYLb6GgHTUAGaAhHQISSUDjin511fZQoaAZHwEcpQu27Wd5oB01ABmgIR0CEmCG8EmpmdX2UKGgGR8BAzan752yLaAdNQAZoCEdAhJjouoP07XV9lChoBkfAQUhHqeK8+WgHTUAGaAhHQISZzORkmQd1fZQoaAZHwEl9Aeq7yx1oB01ABmgIR0CEnguB+WnkdX2UKGgGR8BZq952Qnx8aAdLN2gIR0CEnsQkona4dX2UKGgGR8BFv/hESdvsaAdNQAZoCEdAhKOJblijL3V9lChoBkfAO0ditq59VmgHTUAGaAhHQISnUdFOO811fZQoaAZHwED8Dr7fpEBoB01ABmgIR0CEp/0AcT8HdX2UKGgGR8A7+QgcLjPwaAdNQAZoCEdAhKpzwUg0THV9lChoBkfARDDafzz3AWgHTUAGaAhHQISuJgE2YOV1fZQoaAZHwDywsI3R5TtoB01ABmgIR0CErxXlKbrkdX2UKGgGR8BF4W4Vh1DCaAdNQAZoCEdAhLHipeeFtnV9lChoBkfAQdUyad+Xq2gHTUAGaAhHQISy1tfoicJ1fZQoaAZHwFznUADJU5xoB0tIaAhHQIS1jho/Rmd1fZQoaAZHwEGY0ZWJaaFoB01ABmgIR0CEt9lwtJ4CdX2UKGgGR8A+vIBRyfcvaAdNQAZoCEdAhLh+TvAoHHV9lChoBkfAQCbsrupjt2gHTUAGaAhHQIS48K9f1Hx1fZQoaAZHwDrQVymygPFoB01ABmgIR0CEueGTLW7OdX2UKGgGR8Ba82eUY8+zaAdLVmgIR0CEupqFh5PedX2UKGgGR8A/ePfKp1ifaAdNQAZoCEdAhLp48EFGG3V9lChoBkfAQHm29cry2GgHTUAGaAhHQIS9vtMPBi11fZQoaAZHwENNBqsU7CBoB01ABmgIR0CEv+2dd3SsdX2UKGgGR8Bjantx+8XfaAdNvwRoCEdAhMFnim2srHV9lChoBkfARSSWgOBlMGgHTUAGaAhHQITB7s2NvO11fZQoaAZHwF19r4Fiay9oB0tfaAhHQITDHAdn0051fZQoaAZHwFrqGVzIV/NoB0tVaAhHQITHe0/nnuB1fZQoaAZHwFwm64Ds+mpoB0s7aAhHQITIZiw0O3F1fZQoaAZHwEI6yRB/qgRoB01ABmgIR0CEyw8hcJMQdX2UKGgGR8BGlXlCCz1LaAdNQAZoCEdAhM2AMc6vJXV9lChoBkfARJH71qWTo2gHTUAGaAhHQITN/pdKNAF1fZQoaAZHwES7/0/W1+loB01ABmgIR0CEzx+JgsshdX2UKGgGR8BaVdK7I1cdaAdLQmgIR0CE018iOeasdX2UKGgGR8BBxS6MBIWhaAdNQAZoCEdAhNOJgTh5xHV9lChoBkfAQPrYf4h2XGgHTUAGaAhHQITVYMWoFV11fZQoaAZHwFt4TKkl/pdoB0tPaAhHQITWLfaYeDF1fZQoaAZHwEUcm8dxQzloB01ABmgIR0CE4baTwDvFdX2UKGgGR8BAZm4Ajps5aAdNQAZoCEdAhOO/PX05EXV9lChoBkfARP7E74i5eGgHTUAGaAhHQITstSydFv11fZQoaAZHwEJt4TsY2sJoB01ABmgIR0CE7R4+r2g4dX2UKGgGR8BCPqWC2+fzaAdNQAZoCEdAhO7AFPi1iXV9lChoBkfAW+Xn0TURWmgHSzBoCEdAhPFUZm7J4nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 40, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0d69db52c497ffc9428080b87e6540f1ad7c9047439bbbf852d95f84760d97
|
3 |
+
size 179984
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x790f74c875b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x790f74c87640>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x790f74c876d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x790f74c87760>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x790f74c877f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x790f74c87880>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x790f74c87910>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x790f74c879a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x790f74c87a30>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x790f74c87ac0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x790f74c87b50>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x790f74c87be0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x790f75b4c180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1024000,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1729674377411240743,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQ8AAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADwAAAAAAAOtgyD3F9I89YfrIPMiNkD1ovFW/AACAMwj/ID4AAIC/AAAAAOY1gj9brg6/NlZvP6uqqrEAAIA/ruh6PiTCfT7VUYM+G1OLPpjcmD6GuK4+WgDNPmo5Aj9zPzk/AACAP+0cYT6oOlU7N9JdPbJJdb3nGVO/AAAAs6/ZAD/NQy+/AACAP5Q4jT/vd9o96fgPP/v/f78AAAAADGWSPtYujz7PbY8+jMKTPrQMnT5jJrE+8lnIPg+p7T4Bzxs/AACAPz2lij5mvb89AL2LPYbzkjuvvFW/AFBIOmCC9jxl/ce+AACAP/0NkD8AgPG3VkC/PguMgL8AAIA/GIR/Pg6xgT4JhYY+P7iOPhr2mj7XsKw+04DIPt6+7z5IRhg/xHdrP/L2n73EADs89VoEPc3VwL3uCC2/z5Aov5lvBT/IgPw+AACAP6JEkT8AAAAAvrxkPwDQAj4AAIA/6omPPjgrkT7YP5Y+hmifPmTqrT6vLMQ+GurmPkw9ED+kLUk/AACAPx9Y9zyj8pc84j2/PbhDHr7rFD+/IlF0v1wdeD4AAIA/AAAAAKf0jT9LPmO+6EfEPgIAgD8AAAAAziCePt0coz5LZqs+Mr24Ph32zD7nV+o+/EILP6AvKz8hqV0/AACAP1Pujj2ST0I84+KXPbEyGD0z4VO/AACAsuQcQz/1A6W7AACAP+kwjj+20Jg+pPU8PgIAgL8AAIA/cROjPkWjpj5zAq4+4gK6PvR9yj6cS+Q+j/wEP15kIT9ArFI/AACAPyf+Lz1kGq+8f1giPQhVsjxy4Sm/CsRgPbRhSz79hQA+AACAP8XMlj/Us3w/kxM5PxsAgL8AAAAAt6CEPmm9hT7nook+qFuRPgkunj7HVbE+UdPPPi0iAT+a9jk/AACAP/ZfhD0HnqE9LWlfPXLBMTyxgFa/KuN/v0KplD4HeIw+AAAAAD2ejT8AABy34uw6P9NMQL8AAIA/JE6IPmvaiT6ArY4+BWCXPrsmpT7dSbo+G0fbPnz4CD9YeTk/AACAPwPatT4Yo3u9SgE0PloOxrwNqk2/AIAqtyDVs73XoZw+AACAPxMpiz9304A/5OU3P9f/f78AAAAA+mSCPt/Tgj4hSoY+yIeNPgdZmT63Las+LszIPgwfAT/jATU/AACAP9VCxDyslIC9Elk2Ps9DmD05zk2/JgbYPn4H1z7NAIC/AAAAAHhQhz9y5n8/QAI5P0RHgL8AAIA/vjOMPjyxjz7axJY+xA+iPs6qsz5buc4+35L5Pj8xID9Hd1U/AACAP6Qwy73xG9m8tB/uPclYvz3L6lO/AEjnuN1BXj8L3NI+AACAP59EkT8AAEo2lDFoP6DrHTwAAIA/LKyRPq5Tkz6ke5g+LcehPkGAsD5BF8c+eWDqPh8/Ej+AOUI/AACAP4KMrL2hZj67/eNHPcAcJj3ZGl6/Hzc1v4w3WD/lo38/AACAP5hvkT8Agim4pq1wP7LNjb0AAIA/jeKKPlR2jD7JYJE+cj2aPudGqD5y0L0+hm3fPh6QCz8Ebzw/AACAP3BTZT6OVDC9YWr8PbixK73N+US/WY9xPlDCar7DVn2/AAAAALrJkD8AdA66wjQJP9EMgb8AAAAAMlOBPjmUgz6YMok+BaSSPm38nz5dqbM+rCvRPitAAT/e5i4/AACAP4RKjTyFBFw8a5M+PT+H5L3XvlW/AAAQtNCMAT4AAIC/AAAAADRGkT8AAAAAbF1vP1VV1TIAAAAADuuSPmYKlT5YNps+pw2mPnvgtj5jSM4+nhv0PqnBGj9XM0w/AACAP4TiqT5E60O98aInPnZGybwMwk2/QH05PKCFX754tn4/AAAAAD08iT/INX8/uMjLPr4bgb8AAIA/ljN6Pp38eT4w1n8+WoSGPvFGkj5fs6Q+ZufAPuQG6T5j8RE/xhJNP26+KTzIZK69ms4YPmaArL2t8zm/BgCAP5TbpD79/3+/AACAP8s8jD9wGdC91pN+PwAAgD8AAAAA9myFPos4iD7J3ow+vnOUPoEonz4tK68+bhnMPjqaAT/zCTo/AACAP6LuXr2c2oK9q22HPc37xD0lKlO/AGBluCHxdD+NYT8/AACAP5EgkT8AAA42IBMjP9CWwD4AAIA/PLOdPreFnz5LLqU+uiiwPkC0wT6gaNs+3pT8Pj/DFj90AEY/AACAP5qKnz2q5wK9ZxQQPncRrb1D0wK/QNBeP4Do9rxgdSE/AAAAAPlffT/CiUu/w3YxP+sjnz8AAIA/rwCZPoG9mj7iJ6A+KOupPuNhuT7jG9E+v634PusyGD9ULFM/AACAPzEwqzzcPvS8C9p+PbMGtDye01O/AKJHOpm7AD8L4YM+AACAP1Fojj8AsBy4hCx5P3Hjfz8AAIA/uxCDPsaNhD7g44k+jCOTPp72oT6JKbc+bhHUPny5AD8ltSo/AACAP8Z1Vz4YWX09PripPX2Rm7vllVK/pXewv7Af1T2t7H8/AACAP5D8hj96pXm/VNv1Pij/fz8AAIA/T4qJPo9yiz5iHpA+Zn+YPlkqpT7NIbo+lvXcPqQzCT8HYzY/AACAP0CSkr2FwQU8saEGvN14C73qfAO//v9/P361lj7rFNe/AACAP5pbhz/meSi/BmZ6P7jsuD8AAAAAdoeWPhc9mD4/EJ8+gOCqPtFAvj63bNw+1yMDP2RlJD+hIVU/AACAP5ShtD7qOmk8yXRVPdcUbL7QXlC/IoulPnzWH79dT6+/AAAAACxAiz9gFdi7zFYGP/v/fz8AAAAACV+GPrDlhz4/p4w+LTqVPtnOoj40pbc+8SzYPjwiCD/+STo/AACAP0SW4DzB0YC8JruaPUlGwz24P06/AAAAMpaJ5T5nTJY+AAAAAOLWjT8AAAAAriddP1v5j70AAIA/AESDPqDBhD4LZ4k+PseRPo8Lnz6hZrM+oCvTPgvoAz/RCjc/AACAP7wh2D4Msa89brZPPayWnr1Cvhy/AQCAv/ipvL77/38/AAAAAMW+YD9Sfgi/AOaiPHX8xz8AAAAA2kSlPlUlpz7c/qw+f4q3Ppo+yD6P3+E+rO8EP440JT85GXA/AACAP7ZFgD3zeqy7VMaXPPbaID0YVlK/xERFPqgfLT6wIH+/AACAP8VIkT8AGq+4HHlvP5Hbq7wAAAAAvrhfPlG4Yj57VGs+2356PjxOiD4Fdpg+JQq0PoNU4T7GQRc/iUhvP0hG8j26jcm7KEOYPWSUQ71gXS6/+imVvnjlXT6Pu4Q+AAAAACoUkD+YqUI/Do7XPgEAgL8AAAAAbMCMPtg7jz46P5U+u4yfPiOIrz7Rs8c+lz3sPmRVEj//E0s/AACAP7nAMz6WhIo99PImPdt/Cr4p4ji/oH09v2DCTL39/38/AAAAAPJ1jj8AAAAAyAkWPwEAgL8AAAAA4dGDPh1RhT6O+4k+306SPpSknz6bm7c+/YzaPlGnBz+ADTQ/AACAP3Kymz8XNcw9QDwBvSFWtL4pKQs/85tbvwCYLr0BAIA/AAAAAH8taz9QsTw/wiITPwAAgL8AAAAA49NtPlCHcD5O8ng+lg+EPlIUkD4KhaI+vUy/Phn97j5eFSQ/AACAP0CjCz7PaI88dQPOPBNhrjxO1Ci/X/fQPrTMAz7Fs7C/AACAP40pkD8AAAAAnJA8P/0rgT8AAAAA4ZGZPo84mz4fN6A+aCqpPiECtz7SNco+Mp7lPo5kCD977zQ/AACAP3czwTulzKC8LxFgPd0upD0S01O/AJDFN7RZ0z7+VZc+AACAP5DBkD8AAOu1jlZvP1XL1rkAAIA/lmqBPgaEgz5aJog+zh6QPvfBmz5vKa0+l9PLPkyu9j4rUB0/I+xbPyLeb72AHe68mkbsPdce+T3tEU6/AN4BOrJhFD8FquY+AAAAAOUZkT8AQCe4lAVvP0vnH7wAAIA/TzCBPtXXgj6j7oY+d1yOPqqNmz4jM7E+YkfYPgEgCj+J7T0/AACAP5EKGr7yMTi9+Ce8vO3QH70s4P4+eMTsPpijGL49f7K+AAAAAFeHWT8CAIA/oMMtvQMAgD8AAAAAmVPmPjjx6D4+GPE+lcr/PvyICz/PZB0/IkQ5P3BzZz8AAIA/AACAP7FH4b136M26UWXDPVrH7z0TflS/4UeUPXxkNj8PwrK+AACAP6BEkT8AAAAAss1oPyTIfr4AAIA/28WIPqJhij6OcY8+lZaYPqN6pz4mnsE+cibvPgH1GT/T/k4/AACAP1DEUj1syYe8dgbAPMpJnD2251S/AK24uYjTuT4zKYU+AAAAAKy1jj8AsIc38hppP9XebrwAAIA/vFZuPsvccj6tXH0+GLqGPs7Ukj42k6U+2lHCPv5p8j5EejE/AACAP1suLj4h08s806AaPiKuI74cWEq/IoJEPmCeAj0DAIC/AAAAALmOeT8BAIC//fo7P3tbsz8AAIA/nd6BPgKAgz6bVYg+o7aQPiXinT4jELU+IpjdPlB0ET+fCEc/AACAP2a5Hr4hAtU5rIPdvMzmEz37ITq/U/EvP7BWEb4pvO4+AAAAABtZBj+jPim7xMUfv4/FmD0AAIA/0V+uPsVasD7NhrY+LKfBPt5G0z5KUe4+nUIMP7w5Lz9VnHA/AACAP8dmjT6f66e6TAd6PQ8sPz2Tyk6/WZMZvwA5G7z9/38/AAAAACj6jT8AAAAABBThvoOIQT8AAIA/6uKLPo6HkD4yEJg+BSWkPgjutT58UNA+qAn2PnrcGT/LVFA/AACAPzWDJz5TZfg9lxnVPewj+btKuh2/uTqgvyj0Kz6ne/o+AACAP7UVfT8AAIC/q+AOP1aplj4AAIA/U/edPiY0oD610aU+t86tPjlyuj5hcM4+VkL0PrzBHD/FEWo/AACAPw3uRD76H0E8VrICvUjfv70SyjS/oPA0P0DT5Tz1/3+/AACAP16ijz8AAAAAskcqPwEAgD8AAAAAdPmDPiN5hT76JIo+wpCSPmrnnz6fXrQ+iE/UPmKeBD/rGjY/AACAP5aUDjvxRFq8NsxSPfPpLzzN0RS/6CRSPyiMpj0BAIC/AAAAAMsEjz8AAAAA5qZjP/z/fz8AAIA/Txl+Pig1gj4o1og+c+eTPpL5pD6Xrb0+zrLhPvNCDz+WT0A/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLKEsYhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVmwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSyiFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.02400000000000002,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEAmOy3Td+KMAWyUTUAGjAF0lEdAgqaDRMN+b3V9lChoBkfAWi+xJNCZ4WgHS0doCEdAgqs+PaL4vnV9lChoBkfAROb4+KTB7GgHTUAGaAhHQIKtujM3ZPF1fZQoaAZHwErRt2s7uD1oB01ABmgIR0CCsBG0/nnudX2UKGgGR8Bbaju8brC4aAdLUGgIR0CDESDs+mm+dX2UKGgGR8BJ674SHuZ1aAdNQAZoCEdAgx1NCRfWtnV9lChoBkfASg9m4AjptGgHTUAGaAhHQIMiFzU7SzB1fZQoaAZHwF4bT9KmKqJoB0uNaAhHQIMucxREWqN1fZQoaAZHwEoj3YcvM8poB01ABmgIR0CDL2dXko4NdX2UKGgGR8BbLtUGVzIWaAdLUmgIR0CDNgTs6aLGdX2UKGgGR8BSQEX+ERJ3aAdNQAZoCEdAgzfwYcebNXV9lChoBkfAXLwtCiRGMGgHSz9oCEdAgz1jgZTAFnV9lChoBkfAPqsPOIInjWgHTUAGaAhHQINGAYWLxZx1fZQoaAZHwESWtSQ5myxoB01ABmgIR0CDRwBun/DMdX2UKGgGR8BGJIMrmQr+aAdNQAZoCEdAg0i8fvF3p3V9lChoBkfAR7h4B3iaRmgHTUAGaAhHQINPXiPyTZB1fZQoaAZHwEOOvvjOs1doB01ABmgIR0CDVeAwPAfudX2UKGgGR8BFrOjqOcUeaAdNQAZoCEdAg1nQXZXdTHV9lChoBkfAQBO3KB/ZumgHTUAGaAhHQINaepyZKFt1fZQoaAZHwEIohbnoxHpoB01ABmgIR0CDXPJyQxN7dX2UKGgGR8BGm3jlxOtXaAdNQAZoCEdAg2CO7pV0cXV9lChoBkfAS21C7btZ3mgHTUAGaAhHQINhgHkcS5B1fZQoaAZHwFNyYzzmOlxoB01ABmgIR0CDYkjrzGxVdX2UKGgGR8BDSG8M/hVEaAdNQAZoCEdAg2RQl0HQhXV9lChoBkfAQ3cjC53C9GgHTUAGaAhHQINlSVKPGQ11fZQoaAZHwFvhe2NNrTJoB0tZaAhHQINqJW1c+q11fZQoaAZHwEaN0voNd7hoB01ABmgIR0CDasMF2V3VdX2UKGgGR8BG+g13t8eCaAdNQAZoCEdAg2szZQHiWHV9lChoBkfATteTPjXFtWgHTUAGaAhHQINsV74SHuZ1fZQoaAZHwEHHsIE8q4JoB01ABmgIR0CDbDaKUFB6dX2UKGgGR8BIxh1cMVk+aAdNQAZoCEdAg2zQyZa3Z3V9lChoBkfAQEN+7UXpGGgHTUAGaAhHQINv3qoqCpZ1fZQoaAZHwF0S+TNdJJ5oB0tBaAhHQINyNNxlxwR1fZQoaAZHwEtz5WRzRx9oB01ABmgIR0CDdD3Ux20RdX2UKGgGR8BQO1RxcVxkaAdNQAZoCEdAg9fk0iyIHnV9lChoBkfAPp8sUZeiSWgHTUAGaAhHQIPaHD7655J1fZQoaAZHwEOmAlOXVsloB01ABmgIR0CD2pmOlwcYdX2UKGgGR8BHX16u4gA7aAdNQAZoCEdAg9u7X6InB3V9lChoBkfARjJuQ6p5vGgHTUAGaAhHQIPc2tCAtnR1fZQoaAZHwEdl/DtPYWdoB01ABmgIR0CD4C5Ke05VdX2UKGgGR8BDABYvFm4BaAdNQAZoCEdAg+HtLUTcqXV9lChoBkfAXYzd56dDpmgHS0poCEdAg+NOXu3MIXV9lChoBkfARnkNpdrwfGgHTUAGaAhHQIPpyfFrEcd1fZQoaAZHwF4G0cOskptoB0tTaAhHQIPqtGus90R1fZQoaAZHwEj2O5J9RaZoB01ABmgIR0CD68jEehf0dX2UKGgGR8BESbDuSfUXaAdNQAZoCEdAg/CLlvIfbXV9lChoBkfAXH7omois4mgHS01oCEdAg/DNY0VJtnV9lChoBkfAQzYpUgjhUGgHTUAGaAhHQIPxdyimEXd1fZQoaAZHwEHk4QSSNfhoB01ABmgIR0CD8cqlP8AJdX2UKGgGR8BE2GVqveP8aAdNQAZoCEdAg/NxRuTA33V9lChoBkfASBImG/N7jWgHTUAGaAhHQIP4Blg+hXd1fZQoaAZHwFwYDjR2KVJoB0tpaAhHQIP6Ke/YapB1fZQoaAZHwENnqubI91VoB01ABmgIR0CD+nImw7kodX2UKGgGR8Bdjk7fYSQHaAdLZmgIR0CEAyEHMUypdX2UKGgGR8A/HdAgPmPpaAdNQAZoCEdAhAPbALy+YnV9lChoBkfARG2UhV2ic2gHTUAGaAhHQIQVU89wFTx1fZQoaAZHwEkSFj/dZaFoB01ABmgIR0CEK4SrYGt7dX2UKGgGR8BG6RlQMx46aAdNQAZoCEdAhDPoznA6+3V9lChoBkfAQHy6pYLb6GgHTUAGaAhHQISSUDjin511fZQoaAZHwEcpQu27Wd5oB01ABmgIR0CEmCG8EmpmdX2UKGgGR8BAzan752yLaAdNQAZoCEdAhJjouoP07XV9lChoBkfAQUhHqeK8+WgHTUAGaAhHQISZzORkmQd1fZQoaAZHwEl9Aeq7yx1oB01ABmgIR0CEnguB+WnkdX2UKGgGR8BZq952Qnx8aAdLN2gIR0CEnsQkona4dX2UKGgGR8BFv/hESdvsaAdNQAZoCEdAhKOJblijL3V9lChoBkfAO0ditq59VmgHTUAGaAhHQISnUdFOO811fZQoaAZHwED8Dr7fpEBoB01ABmgIR0CEp/0AcT8HdX2UKGgGR8A7+QgcLjPwaAdNQAZoCEdAhKpzwUg0THV9lChoBkfARDDafzz3AWgHTUAGaAhHQISuJgE2YOV1fZQoaAZHwDywsI3R5TtoB01ABmgIR0CErxXlKbrkdX2UKGgGR8BF4W4Vh1DCaAdNQAZoCEdAhLHipeeFtnV9lChoBkfAQdUyad+Xq2gHTUAGaAhHQISy1tfoicJ1fZQoaAZHwFznUADJU5xoB0tIaAhHQIS1jho/Rmd1fZQoaAZHwEGY0ZWJaaFoB01ABmgIR0CEt9lwtJ4CdX2UKGgGR8A+vIBRyfcvaAdNQAZoCEdAhLh+TvAoHHV9lChoBkfAQCbsrupjt2gHTUAGaAhHQIS48K9f1Hx1fZQoaAZHwDrQVymygPFoB01ABmgIR0CEueGTLW7OdX2UKGgGR8Ba82eUY8+zaAdLVmgIR0CEupqFh5PedX2UKGgGR8A/ePfKp1ifaAdNQAZoCEdAhLp48EFGG3V9lChoBkfAQHm29cry2GgHTUAGaAhHQIS9vtMPBi11fZQoaAZHwENNBqsU7CBoB01ABmgIR0CEv+2dd3SsdX2UKGgGR8Bjantx+8XfaAdNvwRoCEdAhMFnim2srHV9lChoBkfARSSWgOBlMGgHTUAGaAhHQITB7s2NvO11fZQoaAZHwF19r4Fiay9oB0tfaAhHQITDHAdn0051fZQoaAZHwFrqGVzIV/NoB0tVaAhHQITHe0/nnuB1fZQoaAZHwFwm64Ds+mpoB0s7aAhHQITIZiw0O3F1fZQoaAZHwEI6yRB/qgRoB01ABmgIR0CEyw8hcJMQdX2UKGgGR8BGlXlCCz1LaAdNQAZoCEdAhM2AMc6vJXV9lChoBkfARJH71qWTo2gHTUAGaAhHQITN/pdKNAF1fZQoaAZHwES7/0/W1+loB01ABmgIR0CEzx+JgsshdX2UKGgGR8BaVdK7I1cdaAdLQmgIR0CE018iOeasdX2UKGgGR8BBxS6MBIWhaAdNQAZoCEdAhNOJgTh5xHV9lChoBkfAQPrYf4h2XGgHTUAGaAhHQITVYMWoFV11fZQoaAZHwFt4TKkl/pdoB0tPaAhHQITWLfaYeDF1fZQoaAZHwEUcm8dxQzloB01ABmgIR0CE4baTwDvFdX2UKGgGR8BAZm4Ajps5aAdNQAZoCEdAhOO/PX05EXV9lChoBkfARP7E74i5eGgHTUAGaAhHQITstSydFv11fZQoaAZHwEJt4TsY2sJoB01ABmgIR0CE7R4+r2g4dX2UKGgGR8BCPqWC2+fzaAdNQAZoCEdAhO7AFPi1iXV9lChoBkfAW+Xn0TURWmgHSzBoCEdAhPFUZm7J4nVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 100,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
24
|
63 |
+
],
|
64 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
65 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
66 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
67 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True]",
|
75 |
+
"bounded_above": "[ True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
4
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 40,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8532f45f7a70be50d2ebb3395cf3676cf0639c787e5257540f913703388eba5
|
3 |
+
size 105441
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf338f3da340125db6b7625615c3b475b8f4419ba2cc46fb079d5592786f9916
|
3 |
+
size 52271
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.4.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (330 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 109.43954356579533, "std_reward": 4.8517220596134365, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-23T09:20:17.927106"}
|