Upload models.py
Browse files
models.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from typing import Any, Tuple, Union
|
5 |
+
|
6 |
+
from utils import (
|
7 |
+
ImageType,
|
8 |
+
crop_image_part,
|
9 |
+
)
|
10 |
+
|
11 |
+
from layers import (
|
12 |
+
SpectralConv2d,
|
13 |
+
InitLayer,
|
14 |
+
SLEBlock,
|
15 |
+
UpsampleBlockT1,
|
16 |
+
UpsampleBlockT2,
|
17 |
+
DownsampleBlockT1,
|
18 |
+
DownsampleBlockT2,
|
19 |
+
Decoder,
|
20 |
+
)
|
21 |
+
|
22 |
+
from huggan.pytorch.huggan_mixin import HugGANModelHubMixin
|
23 |
+
|
24 |
+
|
25 |
+
class Generator(nn.Module, HugGANModelHubMixin):
|
26 |
+
|
27 |
+
def __init__(self, in_channels: int,
|
28 |
+
out_channels: int):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self._channels = {
|
32 |
+
4: 1024,
|
33 |
+
8: 512,
|
34 |
+
16: 256,
|
35 |
+
32: 128,
|
36 |
+
64: 128,
|
37 |
+
128: 64,
|
38 |
+
256: 32,
|
39 |
+
512: 16,
|
40 |
+
1024: 8,
|
41 |
+
}
|
42 |
+
|
43 |
+
self._init = InitLayer(
|
44 |
+
in_channels=in_channels,
|
45 |
+
out_channels=self._channels[4],
|
46 |
+
)
|
47 |
+
|
48 |
+
self._upsample_8 = UpsampleBlockT2(in_channels=self._channels[4], out_channels=self._channels[8] )
|
49 |
+
self._upsample_16 = UpsampleBlockT1(in_channels=self._channels[8], out_channels=self._channels[16] )
|
50 |
+
self._upsample_32 = UpsampleBlockT2(in_channels=self._channels[16], out_channels=self._channels[32] )
|
51 |
+
self._upsample_64 = UpsampleBlockT1(in_channels=self._channels[32], out_channels=self._channels[64] )
|
52 |
+
self._upsample_128 = UpsampleBlockT2(in_channels=self._channels[64], out_channels=self._channels[128] )
|
53 |
+
self._upsample_256 = UpsampleBlockT1(in_channels=self._channels[128], out_channels=self._channels[256] )
|
54 |
+
self._upsample_512 = UpsampleBlockT2(in_channels=self._channels[256], out_channels=self._channels[512] )
|
55 |
+
self._upsample_1024 = UpsampleBlockT1(in_channels=self._channels[512], out_channels=self._channels[1024])
|
56 |
+
|
57 |
+
self._sle_64 = SLEBlock(in_channels=self._channels[4], out_channels=self._channels[64] )
|
58 |
+
self._sle_128 = SLEBlock(in_channels=self._channels[8], out_channels=self._channels[128])
|
59 |
+
self._sle_256 = SLEBlock(in_channels=self._channels[16], out_channels=self._channels[256])
|
60 |
+
self._sle_512 = SLEBlock(in_channels=self._channels[32], out_channels=self._channels[512])
|
61 |
+
|
62 |
+
self._out_128 = nn.Sequential(
|
63 |
+
SpectralConv2d(
|
64 |
+
in_channels=self._channels[128],
|
65 |
+
out_channels=out_channels,
|
66 |
+
kernel_size=1,
|
67 |
+
stride=1,
|
68 |
+
padding='same',
|
69 |
+
bias=False,
|
70 |
+
),
|
71 |
+
nn.Tanh(),
|
72 |
+
)
|
73 |
+
|
74 |
+
self._out_1024 = nn.Sequential(
|
75 |
+
SpectralConv2d(
|
76 |
+
in_channels=self._channels[1024],
|
77 |
+
out_channels=out_channels,
|
78 |
+
kernel_size=3,
|
79 |
+
stride=1,
|
80 |
+
padding='same',
|
81 |
+
bias=False,
|
82 |
+
),
|
83 |
+
nn.Tanh(),
|
84 |
+
)
|
85 |
+
|
86 |
+
def forward(self, input: torch.Tensor) -> \
|
87 |
+
Tuple[torch.Tensor, torch.Tensor]:
|
88 |
+
size_4 = self._init(input)
|
89 |
+
size_8 = self._upsample_8(size_4)
|
90 |
+
size_16 = self._upsample_16(size_8)
|
91 |
+
size_32 = self._upsample_32(size_16)
|
92 |
+
|
93 |
+
size_64 = self._sle_64 (size_4, self._upsample_64 (size_32) )
|
94 |
+
size_128 = self._sle_128(size_8, self._upsample_128(size_64) )
|
95 |
+
size_256 = self._sle_256(size_16, self._upsample_256(size_128))
|
96 |
+
size_512 = self._sle_512(size_32, self._upsample_512(size_256))
|
97 |
+
|
98 |
+
size_1024 = self._upsample_1024(size_512)
|
99 |
+
|
100 |
+
out_128 = self._out_128 (size_128)
|
101 |
+
out_1024 = self._out_1024(size_1024)
|
102 |
+
return out_1024, out_128
|
103 |
+
|
104 |
+
|
105 |
+
class Discriminrator(nn.Module, HugGANModelHubMixin):
|
106 |
+
|
107 |
+
def __init__(self, in_channels: int):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
self._channels = {
|
111 |
+
4: 1024,
|
112 |
+
8: 512,
|
113 |
+
16: 256,
|
114 |
+
32: 128,
|
115 |
+
64: 128,
|
116 |
+
128: 64,
|
117 |
+
256: 32,
|
118 |
+
512: 16,
|
119 |
+
1024: 8,
|
120 |
+
}
|
121 |
+
|
122 |
+
self._init = nn.Sequential(
|
123 |
+
SpectralConv2d(
|
124 |
+
in_channels=in_channels,
|
125 |
+
out_channels=self._channels[1024],
|
126 |
+
kernel_size=4,
|
127 |
+
stride=2,
|
128 |
+
padding=1,
|
129 |
+
bias=False,
|
130 |
+
),
|
131 |
+
nn.LeakyReLU(negative_slope=0.2),
|
132 |
+
SpectralConv2d(
|
133 |
+
in_channels=self._channels[1024],
|
134 |
+
out_channels=self._channels[512],
|
135 |
+
kernel_size=4,
|
136 |
+
stride=2,
|
137 |
+
padding=1,
|
138 |
+
bias=False,
|
139 |
+
),
|
140 |
+
nn.BatchNorm2d(num_features=self._channels[512]),
|
141 |
+
nn.LeakyReLU(negative_slope=0.2),
|
142 |
+
)
|
143 |
+
|
144 |
+
self._downsample_256 = DownsampleBlockT2(in_channels=self._channels[512], out_channels=self._channels[256])
|
145 |
+
self._downsample_128 = DownsampleBlockT2(in_channels=self._channels[256], out_channels=self._channels[128])
|
146 |
+
self._downsample_64 = DownsampleBlockT2(in_channels=self._channels[128], out_channels=self._channels[64] )
|
147 |
+
self._downsample_32 = DownsampleBlockT2(in_channels=self._channels[64], out_channels=self._channels[32] )
|
148 |
+
self._downsample_16 = DownsampleBlockT2(in_channels=self._channels[32], out_channels=self._channels[16] )
|
149 |
+
|
150 |
+
self._sle_64 = SLEBlock(in_channels=self._channels[512], out_channels=self._channels[64])
|
151 |
+
self._sle_32 = SLEBlock(in_channels=self._channels[256], out_channels=self._channels[32])
|
152 |
+
self._sle_16 = SLEBlock(in_channels=self._channels[128], out_channels=self._channels[16])
|
153 |
+
|
154 |
+
self._small_track = nn.Sequential(
|
155 |
+
SpectralConv2d(
|
156 |
+
in_channels=in_channels,
|
157 |
+
out_channels=self._channels[256],
|
158 |
+
kernel_size=4,
|
159 |
+
stride=2,
|
160 |
+
padding=1,
|
161 |
+
bias=False,
|
162 |
+
),
|
163 |
+
nn.LeakyReLU(negative_slope=0.2),
|
164 |
+
DownsampleBlockT1(in_channels=self._channels[256], out_channels=self._channels[128]),
|
165 |
+
DownsampleBlockT1(in_channels=self._channels[128], out_channels=self._channels[64] ),
|
166 |
+
DownsampleBlockT1(in_channels=self._channels[64], out_channels=self._channels[32] ),
|
167 |
+
)
|
168 |
+
|
169 |
+
self._features_large = nn.Sequential(
|
170 |
+
SpectralConv2d(
|
171 |
+
in_channels=self._channels[16] ,
|
172 |
+
out_channels=self._channels[8],
|
173 |
+
kernel_size=1,
|
174 |
+
stride=1,
|
175 |
+
padding=0,
|
176 |
+
bias=False,
|
177 |
+
),
|
178 |
+
nn.BatchNorm2d(num_features=self._channels[8]),
|
179 |
+
nn.LeakyReLU(negative_slope=0.2),
|
180 |
+
SpectralConv2d(
|
181 |
+
in_channels=self._channels[8],
|
182 |
+
out_channels=1,
|
183 |
+
kernel_size=4,
|
184 |
+
stride=1,
|
185 |
+
padding=0,
|
186 |
+
bias=False,
|
187 |
+
)
|
188 |
+
)
|
189 |
+
|
190 |
+
self._features_small = nn.Sequential(
|
191 |
+
SpectralConv2d(
|
192 |
+
in_channels=self._channels[32],
|
193 |
+
out_channels=1,
|
194 |
+
kernel_size=4,
|
195 |
+
stride=1,
|
196 |
+
padding=0,
|
197 |
+
bias=False,
|
198 |
+
),
|
199 |
+
)
|
200 |
+
|
201 |
+
self._decoder_large = Decoder(in_channels=self._channels[16], out_channels=3)
|
202 |
+
self._decoder_small = Decoder(in_channels=self._channels[32], out_channels=3)
|
203 |
+
self._decoder_piece = Decoder(in_channels=self._channels[32], out_channels=3)
|
204 |
+
|
205 |
+
def forward(self, images_1024: torch.Tensor,
|
206 |
+
images_128: torch.Tensor,
|
207 |
+
image_type: ImageType) -> \
|
208 |
+
Union[
|
209 |
+
torch.Tensor,
|
210 |
+
Tuple[torch.Tensor, Tuple[Any, Any, Any]]
|
211 |
+
]:
|
212 |
+
# large track
|
213 |
+
|
214 |
+
down_512 = self._init(images_1024)
|
215 |
+
down_256 = self._downsample_256(down_512)
|
216 |
+
down_128 = self._downsample_128(down_256)
|
217 |
+
|
218 |
+
down_64 = self._downsample_64(down_128)
|
219 |
+
down_64 = self._sle_64(down_512, down_64)
|
220 |
+
|
221 |
+
down_32 = self._downsample_32(down_64)
|
222 |
+
down_32 = self._sle_32(down_256, down_32)
|
223 |
+
|
224 |
+
down_16 = self._downsample_16(down_32)
|
225 |
+
down_16 = self._sle_16(down_128, down_16)
|
226 |
+
|
227 |
+
# small track
|
228 |
+
|
229 |
+
down_small = self._small_track(images_128)
|
230 |
+
|
231 |
+
# features
|
232 |
+
|
233 |
+
features_large = self._features_large(down_16).view(-1)
|
234 |
+
features_small = self._features_small(down_small).view(-1)
|
235 |
+
features = torch.cat([features_large, features_small], dim=0)
|
236 |
+
|
237 |
+
# decoder
|
238 |
+
|
239 |
+
if image_type != ImageType.FAKE:
|
240 |
+
dec_large = self._decoder_large(down_16)
|
241 |
+
dec_small = self._decoder_small(down_small)
|
242 |
+
dec_piece = self._decoder_piece(crop_image_part(down_32, image_type))
|
243 |
+
return features, (dec_large, dec_small, dec_piece)
|
244 |
+
|
245 |
+
return features
|