update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: consejo-ner
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# consejo-ner
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [dccuchile/distilbert-base-spanish-uncased](https://huggingface.co/dccuchile/distilbert-base-spanish-uncased) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3066
|
22 |
+
- Precision: 0.7241
|
23 |
+
- Recall: 0.6774
|
24 |
+
- F1: 0.7
|
25 |
+
- Accuracy: 0.9313
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
56 |
+
| No log | 1.0 | 15 | 1.5724 | 0.0 | 0.0 | 0.0 | 0.6985 |
|
57 |
+
| No log | 2.0 | 30 | 1.3540 | 0.0 | 0.0 | 0.0 | 0.6985 |
|
58 |
+
| No log | 3.0 | 45 | 1.0972 | 0.0 | 0.0 | 0.0 | 0.7099 |
|
59 |
+
| No log | 4.0 | 60 | 0.8615 | 0.5833 | 0.2258 | 0.3256 | 0.7672 |
|
60 |
+
| No log | 5.0 | 75 | 0.7381 | 0.5 | 0.3548 | 0.4151 | 0.8244 |
|
61 |
+
| No log | 6.0 | 90 | 0.6111 | 0.5556 | 0.4839 | 0.5172 | 0.8473 |
|
62 |
+
| No log | 7.0 | 105 | 0.5353 | 0.5185 | 0.4516 | 0.4828 | 0.8550 |
|
63 |
+
| No log | 8.0 | 120 | 0.4786 | 0.5769 | 0.4839 | 0.5263 | 0.8626 |
|
64 |
+
| No log | 9.0 | 135 | 0.4493 | 0.5357 | 0.4839 | 0.5085 | 0.8817 |
|
65 |
+
| No log | 10.0 | 150 | 0.4269 | 0.4839 | 0.4839 | 0.4839 | 0.8779 |
|
66 |
+
| No log | 11.0 | 165 | 0.3977 | 0.5938 | 0.6129 | 0.6032 | 0.8931 |
|
67 |
+
| No log | 12.0 | 180 | 0.3669 | 0.5161 | 0.5161 | 0.5161 | 0.8969 |
|
68 |
+
| No log | 13.0 | 195 | 0.3437 | 0.6786 | 0.6129 | 0.6441 | 0.9237 |
|
69 |
+
| No log | 14.0 | 210 | 0.3389 | 0.6786 | 0.6129 | 0.6441 | 0.9198 |
|
70 |
+
| No log | 15.0 | 225 | 0.3249 | 0.6786 | 0.6129 | 0.6441 | 0.9198 |
|
71 |
+
| No log | 16.0 | 240 | 0.3102 | 0.6897 | 0.6452 | 0.6667 | 0.9275 |
|
72 |
+
| No log | 17.0 | 255 | 0.3094 | 0.6667 | 0.6452 | 0.6557 | 0.9275 |
|
73 |
+
| No log | 18.0 | 270 | 0.3159 | 0.7 | 0.6774 | 0.6885 | 0.9198 |
|
74 |
+
| No log | 19.0 | 285 | 0.3094 | 0.7241 | 0.6774 | 0.7 | 0.9313 |
|
75 |
+
| No log | 20.0 | 300 | 0.3066 | 0.7241 | 0.6774 | 0.7 | 0.9313 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.26.1
|
81 |
+
- Pytorch 1.13.1+cu116
|
82 |
+
- Datasets 2.9.0
|
83 |
+
- Tokenizers 0.13.2
|