Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 190.55 +/- 107.02
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78220d7832e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78220d783370>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78220d783400>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78220d783490>", "_build": "<function ActorCriticPolicy._build at 0x78220d783520>", "forward": "<function ActorCriticPolicy.forward at 0x78220d7835b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78220d783640>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78220d7836d0>", "_predict": "<function ActorCriticPolicy._predict at 0x78220d783760>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78220d7837f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78220d783880>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78220d783910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78220d5886c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710161175366939292, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMa8DL6DWBe8l5VJvDId+bp34XE9G1vPOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2BOOS4e92MAWyUTYEBjAF0lEdAmoqB6nivPnV9lChoBkdAcLAs1baAWmgHTVwBaAhHQJqMV08vEjx1fZQoaAZHQGskTj3mFJxoB03yAWgIR0CakFIzWPLgdX2UKGgGR7/3q3EyckMTaAdNOgFoCEdAmpIIJ/oaDXV9lChoBkdAVlnzCk43m2gHTegDaAhHQJqYiSzPa+N1fZQoaAZHQG8jIpYs/Y9oB02HAWgIR0CamqNFz+3pdX2UKGgGR0Br4PlMh5gPaAdNUgFoCEdAmp2UB8x9HHV9lChoBkdAbatmMfigkGgHTXMBaAhHQJqfoKPXCj11fZQoaAZHQEQIv8qFyrBoB0vsaAhHQJqg34wh4dJ1fZQoaAZHQHEGluJk5IZoB01rAWgIR0Cao++MIeHSdX2UKGgGR0Bya7t8eCCjaAdNNgFoCEdAmqWmkFfReHV9lChoBkdAbsVV4oqkM2gHTT0BaAhHQJqnYYAKfFt1fZQoaAZHwDXFyXD3ueBoB009AWgIR0Caqkgbp/wzdX2UKGgGR0BwKzt6X0GvaAdNSAFoCEdAmqwQSeyzHHV9lChoBkdAVRZEfDDTB2gHTegDaAhHQJq0LCYTkAB1fZQoaAZHQG8pr9VFQVNoB012AWgIR0CatqMDfWMCdX2UKGgGR0BsVbE1l5GCaAdNjAFoCEdAmrohkAggYHV9lChoBkdAb5rc3VCoj2gHTXkBaAhHQJq8Sy6cy311fZQoaAZHQG1ui/GlyipoB01uAWgIR0Cavlk/8l5XdX2UKGgGR0ACmy7f51vEaAdNMQFoCEdAmsEvD+BH1HV9lChoBkdAcD6pHI6sAGgHTbMBaAhHQJrDqgctGut1fZQoaAZHQGrFEJa7mMhoB02GAWgIR0Caxucpb2UTdX2UKGgGR0Bua+mJm/WUaAdNVgFoCEdAmsj/DYRNAXV9lChoBkdAblGoZQ53kmgHTVQBaAhHQJrK2Y9gWrR1fZQoaAZHQHEil2mpEQZoB01OAWgIR0CazeQq7ROUdX2UKGgGR0Bklb1f3N9qaAdN6ANoCEdAmtSuCCjDbnV9lChoBkdAbw97CzkZJmgHTZwBaAhHQJrW6gIyCWh1fZQoaAZHQGu1EMLF4s5oB01qAWgIR0Ca2QJ8OTaCdX2UKGgGR0BtoQ8nuy/saAdNkAFoCEdAmtyUL6UJOXV9lChoBkdAY+/Ilt0mt2gHTYQCaAhHQJrhMakyk9F1fZQoaAZHQDLu2Xsw+MZoB01NAWgIR0Ca5TFb3XZodX2UKGgGR0BuTp82Jiy6aAdNYwFoCEdAmucXymQ8wHV9lChoBkdAcWD+pwS8J2gHTYABaAhHQJrpKhFmWdF1fZQoaAZHQGrrp/5LytpoB01iAWgIR0Ca7Dgn+hoNdX2UKGgGR0BwDQAT7EYPaAdNaAFoCEdAmu49a2WpqHV9lChoBkdAZUJQ4S6DoWgHTQ8CaAhHQJrygeZG8VZ1fZQoaAZHQGv95RKpT/BoB02NAWgIR0Ca9M+u/1xsdX2UKGgGR0BwOZnxri2laAdNRwFoCEdAmvaqcVgx8HV9lChoBkdAcEoe1rqMWGgHTekBaAhHQJr6xXFLnLd1fZQoaAZHQGu8AqEvkBFoB018AWgIR0Ca/OP1L8JldX2UKGgGR0BwVGhM8HObaAdNvgFoCEdAmwDycoYvWnV9lChoBkdAZDHjFyaNM2gHTegDaAhHQJsH+I55qud1fZQoaAZHQG71a5PM0P9oB02mAWgIR0CbCnaqS5iFdX2UKGgGR0BtopAdGRV7aAdNiAFoCEdAmwyT850bLnV9lChoBkfANYw/PgNwzmgHTWEBaAhHQJsQpeeFtbd1fZQoaAZHQHHZa4pc5bRoB02nAWgIR0CbE809yLhrdX2UKGgGR0Bckl9Sde6aaAdN6ANoCEdAmxs6xC6YmnV9lChoBkdAbq0nogV45mgHTa4BaAhHQJsdmn3ta6l1fZQoaAZHQG22wgcLjPxoB01kAWgIR0CbINKDkELZdX2UKGgGR0BINsjmjj7zaAdNMAFoCEdAmyKBFNL13HV9lChoBkdAcBYVYISlFmgHTWgBaAhHQJskbVAiV0N1fZQoaAZHQGOKaq814xFoB01DAmgIR0CbKMBikO7QdX2UKGgGR0BvofsPatcOaAdNhAFoCEdAmyrh6nivPnV9lChoBkdAbnJQJHAh0WgHTbUBaAhHQJsugP+XJHR1fZQoaAZHQGlPS3LFGXpoB03OAWgIR0CbMQMMqjJudX2UKGgGR0BwH5I5HVgAaAdNdgFoCEdAmzQ7sByS3nV9lChoBkdAcePOFxn3+WgHTWQDaAhHQJs5J7IDHOt1fZQoaAZHQFSM/zasZHdoB03oA2gIR0CbQOtgrpaBdX2UKGgGR0Bw/5U3n6l+aAdNQgFoCEdAm0T8CkoF3nV9lChoBkdAbgEUliSaE2gHTXYBaAhHQJtHEb6xgRd1fZQoaAZHQGzI4V6/qPhoB01qAWgIR0CbSkaZQYUGdX2UKGgGR0Bt3ESVW0Z4aAdNjAFoCEdAm0x+HJtBOnV9lChoBkdAcD2hZyMkyGgHTZEBaAhHQJtOsIsyzol1fZQoaAZHQHD8bi++M61oB025AWgIR0CbUnfms/6gdX2UKGgGR0AvfY/3WWhRaAdNQQFoCEdAm1RQAyVObnV9lChoBkdAa4/q7iADrGgHTXQBaAhHQJtWZgVoHs11fZQoaAZHQGqKsotthuxoB01kAWgIR0CbWaCN0eU7dX2UKGgGR0BlwHIjnmq6aAdNnQJoCEdAm11ze0ojOnV9lChoBkdAbztEnb7CSGgHTYUBaAhHQJtg4cZLqUx1fZQoaAZHQG3BgjY7JXBoB01nAWgIR0CbYtwKSgXedX2UKGgGR0BvVmnEVFhHaAdNhQFoCEdAm2UUP1+RYHV9lChoBkdAcVIJDE3sHGgHTWABaAhHQJtoT3Ehq0t1fZQoaAZHQHGxjn7pFCtoB01VAWgIR0CbajPVd5Y6dX2UKGgGR0BuKSoOx0MgaAdNvQFoCEdAm2689GI9DHV9lChoBkdAbAnpgTh5xGgHTX4BaAhHQJtyDt3OfNB1fZQoaAZHQHCWpoXbdrRoB01iAWgIR0CbdRW7e2uxdX2UKGgGR0Bxn7pu/DceaAdNSgFoCEdAm3nwF9roGXV9lChoBkdAb3UP2f02+GgHTXMBaAhHQJt8KtDD0lJ1fZQoaAZHQHH4iDZlFttoB001AWgIR0CbferaM72ddX2UKGgGR0BsQNC1JDmbaAdNegFoCEdAm4FIVqN6xHV9lChoBkdAb1divxH5J2gHTU4BaAhHQJuDJ2X9itt1fZQoaAZHQHFBABgeA/doB000AWgIR0CbhNTaCcwydX2UKGgGR0Bi8pYvFm4BaAdN6ANoCEdAm4vAP7N0NnV9lChoBkdAaY5tE5Qxe2gHTXsBaAhHQJuPBihFmWd1fZQoaAZHQGxAa5wwTM9oB02DAWgIR0CbkSL876pHdX2UKGgGR0Bu2YRkEs8QaAdNaQFoCEdAm5Mt8ma6SXV9lChoBkdAacdD6WPcSGgHTVECaAhHQJuXwrOJLuh1fZQoaAZHQHGvE/wAlv9oB02yAWgIR0CbmjG4qgAZdX2UKGgGR0BhbkwUQCjlaAdN6ANoCEdAm6EPAwfyPXV9lChoBkdAb/b/Ot4iYGgHTXQBaAhHQJuk4bfgrH51fZQoaAZHQCDofp2U0N1oB00xAWgIR0CbpxaP0Zm7dX2UKGgGR0BiRgAEMb3oaAdN6ANoCEdAm67DjNpudnV9lChoBkdAYqwriEQGwGgHTegDaAhHQJu1hiw0O3F1fZQoaAZHQHFVKrR0EHNoB039AWgIR0CbuGfcvduYdX2UKGgGR0AwuVoYekpJaAdNRgFoCEdAm7tb17IDHXV9lChoBkdAcDoAp8WsR2gHTWsCaAhHQJu+3eGfwql1fZQoaAZHQHAmJ0jkdWBoB02xAWgIR0Cbwnea8YhudX2UKGgGRz/rKRU3n6l+aAdNFwFoCEdAm8QP3ztkWnV9lChoBkdAa5uNedCmdmgHTbABaAhHQJvHt8+iaiN1fZQoaAZHQGnfMH8jzI5oB01SAWgIR0CbyZRcNYr8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28e48e07fb3bfaca2507f19c9969c1bdaebffa6c974ccc691cf704f34cfa8849
|
3 |
+
size 147426
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78220d7832e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78220d783370>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78220d783400>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78220d783490>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78220d783520>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78220d7835b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78220d783640>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78220d7836d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78220d783760>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78220d7837f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78220d783880>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78220d783910>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78220d5886c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710161175366939292,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMa8DL6DWBe8l5VJvDId+bp34XE9G1vPOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2BOOS4e92MAWyUTYEBjAF0lEdAmoqB6nivPnV9lChoBkdAcLAs1baAWmgHTVwBaAhHQJqMV08vEjx1fZQoaAZHQGskTj3mFJxoB03yAWgIR0CakFIzWPLgdX2UKGgGR7/3q3EyckMTaAdNOgFoCEdAmpIIJ/oaDXV9lChoBkdAVlnzCk43m2gHTegDaAhHQJqYiSzPa+N1fZQoaAZHQG8jIpYs/Y9oB02HAWgIR0CamqNFz+3pdX2UKGgGR0Br4PlMh5gPaAdNUgFoCEdAmp2UB8x9HHV9lChoBkdAbatmMfigkGgHTXMBaAhHQJqfoKPXCj11fZQoaAZHQEQIv8qFyrBoB0vsaAhHQJqg34wh4dJ1fZQoaAZHQHEGluJk5IZoB01rAWgIR0Cao++MIeHSdX2UKGgGR0Bya7t8eCCjaAdNNgFoCEdAmqWmkFfReHV9lChoBkdAbsVV4oqkM2gHTT0BaAhHQJqnYYAKfFt1fZQoaAZHwDXFyXD3ueBoB009AWgIR0Caqkgbp/wzdX2UKGgGR0BwKzt6X0GvaAdNSAFoCEdAmqwQSeyzHHV9lChoBkdAVRZEfDDTB2gHTegDaAhHQJq0LCYTkAB1fZQoaAZHQG8pr9VFQVNoB012AWgIR0CatqMDfWMCdX2UKGgGR0BsVbE1l5GCaAdNjAFoCEdAmrohkAggYHV9lChoBkdAb5rc3VCoj2gHTXkBaAhHQJq8Sy6cy311fZQoaAZHQG1ui/GlyipoB01uAWgIR0Cavlk/8l5XdX2UKGgGR0ACmy7f51vEaAdNMQFoCEdAmsEvD+BH1HV9lChoBkdAcD6pHI6sAGgHTbMBaAhHQJrDqgctGut1fZQoaAZHQGrFEJa7mMhoB02GAWgIR0Caxucpb2UTdX2UKGgGR0Bua+mJm/WUaAdNVgFoCEdAmsj/DYRNAXV9lChoBkdAblGoZQ53kmgHTVQBaAhHQJrK2Y9gWrR1fZQoaAZHQHEil2mpEQZoB01OAWgIR0CazeQq7ROUdX2UKGgGR0Bklb1f3N9qaAdN6ANoCEdAmtSuCCjDbnV9lChoBkdAbw97CzkZJmgHTZwBaAhHQJrW6gIyCWh1fZQoaAZHQGu1EMLF4s5oB01qAWgIR0Ca2QJ8OTaCdX2UKGgGR0BtoQ8nuy/saAdNkAFoCEdAmtyUL6UJOXV9lChoBkdAY+/Ilt0mt2gHTYQCaAhHQJrhMakyk9F1fZQoaAZHQDLu2Xsw+MZoB01NAWgIR0Ca5TFb3XZodX2UKGgGR0BuTp82Jiy6aAdNYwFoCEdAmucXymQ8wHV9lChoBkdAcWD+pwS8J2gHTYABaAhHQJrpKhFmWdF1fZQoaAZHQGrrp/5LytpoB01iAWgIR0Ca7Dgn+hoNdX2UKGgGR0BwDQAT7EYPaAdNaAFoCEdAmu49a2WpqHV9lChoBkdAZUJQ4S6DoWgHTQ8CaAhHQJrygeZG8VZ1fZQoaAZHQGv95RKpT/BoB02NAWgIR0Ca9M+u/1xsdX2UKGgGR0BwOZnxri2laAdNRwFoCEdAmvaqcVgx8HV9lChoBkdAcEoe1rqMWGgHTekBaAhHQJr6xXFLnLd1fZQoaAZHQGu8AqEvkBFoB018AWgIR0Ca/OP1L8JldX2UKGgGR0BwVGhM8HObaAdNvgFoCEdAmwDycoYvWnV9lChoBkdAZDHjFyaNM2gHTegDaAhHQJsH+I55qud1fZQoaAZHQG71a5PM0P9oB02mAWgIR0CbCnaqS5iFdX2UKGgGR0BtopAdGRV7aAdNiAFoCEdAmwyT850bLnV9lChoBkfANYw/PgNwzmgHTWEBaAhHQJsQpeeFtbd1fZQoaAZHQHHZa4pc5bRoB02nAWgIR0CbE809yLhrdX2UKGgGR0Bckl9Sde6aaAdN6ANoCEdAmxs6xC6YmnV9lChoBkdAbq0nogV45mgHTa4BaAhHQJsdmn3ta6l1fZQoaAZHQG22wgcLjPxoB01kAWgIR0CbINKDkELZdX2UKGgGR0BINsjmjj7zaAdNMAFoCEdAmyKBFNL13HV9lChoBkdAcBYVYISlFmgHTWgBaAhHQJskbVAiV0N1fZQoaAZHQGOKaq814xFoB01DAmgIR0CbKMBikO7QdX2UKGgGR0BvofsPatcOaAdNhAFoCEdAmyrh6nivPnV9lChoBkdAbnJQJHAh0WgHTbUBaAhHQJsugP+XJHR1fZQoaAZHQGlPS3LFGXpoB03OAWgIR0CbMQMMqjJudX2UKGgGR0BwH5I5HVgAaAdNdgFoCEdAmzQ7sByS3nV9lChoBkdAcePOFxn3+WgHTWQDaAhHQJs5J7IDHOt1fZQoaAZHQFSM/zasZHdoB03oA2gIR0CbQOtgrpaBdX2UKGgGR0Bw/5U3n6l+aAdNQgFoCEdAm0T8CkoF3nV9lChoBkdAbgEUliSaE2gHTXYBaAhHQJtHEb6xgRd1fZQoaAZHQGzI4V6/qPhoB01qAWgIR0CbSkaZQYUGdX2UKGgGR0Bt3ESVW0Z4aAdNjAFoCEdAm0x+HJtBOnV9lChoBkdAcD2hZyMkyGgHTZEBaAhHQJtOsIsyzol1fZQoaAZHQHD8bi++M61oB025AWgIR0CbUnfms/6gdX2UKGgGR0AvfY/3WWhRaAdNQQFoCEdAm1RQAyVObnV9lChoBkdAa4/q7iADrGgHTXQBaAhHQJtWZgVoHs11fZQoaAZHQGqKsotthuxoB01kAWgIR0CbWaCN0eU7dX2UKGgGR0BlwHIjnmq6aAdNnQJoCEdAm11ze0ojOnV9lChoBkdAbztEnb7CSGgHTYUBaAhHQJtg4cZLqUx1fZQoaAZHQG3BgjY7JXBoB01nAWgIR0CbYtwKSgXedX2UKGgGR0BvVmnEVFhHaAdNhQFoCEdAm2UUP1+RYHV9lChoBkdAcVIJDE3sHGgHTWABaAhHQJtoT3Ehq0t1fZQoaAZHQHGxjn7pFCtoB01VAWgIR0CbajPVd5Y6dX2UKGgGR0BuKSoOx0MgaAdNvQFoCEdAm2689GI9DHV9lChoBkdAbAnpgTh5xGgHTX4BaAhHQJtyDt3OfNB1fZQoaAZHQHCWpoXbdrRoB01iAWgIR0CbdRW7e2uxdX2UKGgGR0Bxn7pu/DceaAdNSgFoCEdAm3nwF9roGXV9lChoBkdAb3UP2f02+GgHTXMBaAhHQJt8KtDD0lJ1fZQoaAZHQHH4iDZlFttoB001AWgIR0CbferaM72ddX2UKGgGR0BsQNC1JDmbaAdNegFoCEdAm4FIVqN6xHV9lChoBkdAb1divxH5J2gHTU4BaAhHQJuDJ2X9itt1fZQoaAZHQHFBABgeA/doB000AWgIR0CbhNTaCcwydX2UKGgGR0Bi8pYvFm4BaAdN6ANoCEdAm4vAP7N0NnV9lChoBkdAaY5tE5Qxe2gHTXsBaAhHQJuPBihFmWd1fZQoaAZHQGxAa5wwTM9oB02DAWgIR0CbkSL876pHdX2UKGgGR0Bu2YRkEs8QaAdNaQFoCEdAm5Mt8ma6SXV9lChoBkdAacdD6WPcSGgHTVECaAhHQJuXwrOJLuh1fZQoaAZHQHGvE/wAlv9oB02yAWgIR0CbmjG4qgAZdX2UKGgGR0BhbkwUQCjlaAdN6ANoCEdAm6EPAwfyPXV9lChoBkdAb/b/Ot4iYGgHTXQBaAhHQJuk4bfgrH51fZQoaAZHQCDofp2U0N1oB00xAWgIR0CbpxaP0Zm7dX2UKGgGR0BiRgAEMb3oaAdN6ANoCEdAm67DjNpudnV9lChoBkdAYqwriEQGwGgHTegDaAhHQJu1hiw0O3F1fZQoaAZHQHFVKrR0EHNoB039AWgIR0CbuGfcvduYdX2UKGgGR0AwuVoYekpJaAdNRgFoCEdAm7tb17IDHXV9lChoBkdAcDoAp8WsR2gHTWsCaAhHQJu+3eGfwql1fZQoaAZHQHAmJ0jkdWBoB02xAWgIR0Cbwnea8YhudX2UKGgGRz/rKRU3n6l+aAdNFwFoCEdAm8QP3ztkWnV9lChoBkdAa5uNedCmdmgHTbABaAhHQJvHt8+iaiN1fZQoaAZHQGnfMH8jzI5oB01SAWgIR0CbyZRcNYr8dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb260b643e67314249ecd3e72f7077300e67039ddbf758d76a946e97eb463299
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c74e2027a0093ef957bb53d6fca9b8e7bf1fed8d95ccfddbd7e6039ff0a4892
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (152 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 190.55131640000002, "std_reward": 107.0248045614277, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-11T13:37:24.441760"}
|