update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-large-robust-paper
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-large-robust-paper
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-robust](https://huggingface.co/facebook/wav2vec2-large-robust) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.3668
|
20 |
+
- Wer: 0.4372
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 5e-05
|
40 |
+
- train_batch_size: 10
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 420
|
46 |
+
- num_epochs: 50.0
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
52 |
+
| No log | 1.0 | 335 | 3.9163 | 1.0 |
|
53 |
+
| 7.1369 | 2.0 | 670 | 3.3422 | 1.0 |
|
54 |
+
| 3.3448 | 3.0 | 1005 | 3.3355 | 1.0 |
|
55 |
+
| 3.3448 | 4.0 | 1340 | 3.3263 | 1.0 |
|
56 |
+
| 3.3277 | 5.0 | 1675 | 2.8928 | 1.0079 |
|
57 |
+
| 2.6655 | 6.0 | 2010 | 1.7822 | 0.8788 |
|
58 |
+
| 2.6655 | 7.0 | 2345 | 1.3193 | 0.7055 |
|
59 |
+
| 1.4617 | 8.0 | 2680 | 1.1408 | 0.6070 |
|
60 |
+
| 1.0805 | 9.0 | 3015 | 1.0108 | 0.5422 |
|
61 |
+
| 1.0805 | 10.0 | 3350 | 0.9517 | 0.5154 |
|
62 |
+
| 0.8759 | 11.0 | 3685 | 0.9082 | 0.4902 |
|
63 |
+
| 0.7462 | 12.0 | 4020 | 0.8758 | 0.4706 |
|
64 |
+
| 0.7462 | 13.0 | 4355 | 0.8696 | 0.4572 |
|
65 |
+
| 0.6429 | 14.0 | 4690 | 0.8731 | 0.4535 |
|
66 |
+
| 0.5672 | 15.0 | 5025 | 0.8749 | 0.4508 |
|
67 |
+
| 0.5672 | 16.0 | 5360 | 0.8753 | 0.4512 |
|
68 |
+
| 0.4959 | 17.0 | 5695 | 0.9039 | 0.4487 |
|
69 |
+
| 0.4456 | 18.0 | 6030 | 0.9161 | 0.4433 |
|
70 |
+
| 0.4456 | 19.0 | 6365 | 0.9506 | 0.4430 |
|
71 |
+
| 0.392 | 20.0 | 6700 | 0.9412 | 0.4439 |
|
72 |
+
| 0.3594 | 21.0 | 7035 | 0.9884 | 0.4416 |
|
73 |
+
| 0.3594 | 22.0 | 7370 | 1.0222 | 0.4510 |
|
74 |
+
| 0.3175 | 23.0 | 7705 | 1.0345 | 0.4439 |
|
75 |
+
| 0.2947 | 24.0 | 8040 | 1.0849 | 0.4465 |
|
76 |
+
| 0.2947 | 25.0 | 8375 | 1.0879 | 0.4472 |
|
77 |
+
| 0.2674 | 26.0 | 8710 | 1.1071 | 0.4512 |
|
78 |
+
| 0.2521 | 27.0 | 9045 | 1.1147 | 0.4494 |
|
79 |
+
| 0.2521 | 28.0 | 9380 | 1.1426 | 0.4525 |
|
80 |
+
| 0.2321 | 29.0 | 9715 | 1.1592 | 0.4440 |
|
81 |
+
| 0.2235 | 30.0 | 10050 | 1.1782 | 0.4450 |
|
82 |
+
| 0.2235 | 31.0 | 10385 | 1.2050 | 0.4437 |
|
83 |
+
| 0.2071 | 32.0 | 10720 | 1.2224 | 0.4400 |
|
84 |
+
| 0.1951 | 33.0 | 11055 | 1.2270 | 0.4471 |
|
85 |
+
| 0.1951 | 34.0 | 11390 | 1.2466 | 0.4483 |
|
86 |
+
| 0.1892 | 35.0 | 11725 | 1.2325 | 0.4429 |
|
87 |
+
| 0.1809 | 36.0 | 12060 | 1.2755 | 0.4427 |
|
88 |
+
| 0.1809 | 37.0 | 12395 | 1.2675 | 0.4422 |
|
89 |
+
| 0.1746 | 38.0 | 12730 | 1.3022 | 0.4418 |
|
90 |
+
| 0.1656 | 39.0 | 13065 | 1.3179 | 0.4408 |
|
91 |
+
| 0.1656 | 40.0 | 13400 | 1.2934 | 0.4425 |
|
92 |
+
| 0.1614 | 41.0 | 13735 | 1.3304 | 0.4426 |
|
93 |
+
| 0.1564 | 42.0 | 14070 | 1.3148 | 0.4420 |
|
94 |
+
| 0.1564 | 43.0 | 14405 | 1.3267 | 0.4433 |
|
95 |
+
| 0.1546 | 44.0 | 14740 | 1.3331 | 0.4413 |
|
96 |
+
| 0.1515 | 45.0 | 15075 | 1.3445 | 0.4388 |
|
97 |
+
| 0.1515 | 46.0 | 15410 | 1.3530 | 0.4372 |
|
98 |
+
| 0.147 | 47.0 | 15745 | 1.3443 | 0.4385 |
|
99 |
+
| 0.1447 | 48.0 | 16080 | 1.3503 | 0.4369 |
|
100 |
+
| 0.1447 | 49.0 | 16415 | 1.3590 | 0.4393 |
|
101 |
+
| 0.1437 | 50.0 | 16750 | 1.3668 | 0.4372 |
|
102 |
+
|
103 |
+
|
104 |
+
### Framework versions
|
105 |
+
|
106 |
+
- Transformers 4.31.0.dev0
|
107 |
+
- Pytorch 2.0.0+cu117
|
108 |
+
- Datasets 2.7.0
|
109 |
+
- Tokenizers 0.13.2
|