hts98 commited on
Commit
506f656
·
1 Parent(s): 0690526

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -7
README.md CHANGED
@@ -3,6 +3,8 @@ license: mit
3
  base_model: vinai/phobert-large
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
@@ -10,7 +12,26 @@ metrics:
10
  - accuracy
11
  model-index:
12
  - name: ner
13
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -18,13 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  # ner
20
 
21
- This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
- - Loss: 1.7865
24
- - Precision: 0.6846
25
- - Recall: 0.7180
26
- - F1: 0.7009
27
- - Accuracy: 0.8312
28
 
29
  ## Model description
30
 
 
3
  base_model: vinai/phobert-large
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - hts98/UIT
8
  metrics:
9
  - precision
10
  - recall
 
12
  - accuracy
13
  model-index:
14
  - name: ner
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: hts98/UIT
21
+ type: hts98/UIT
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.6879356568364611
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.7163595756560581
29
+ - name: F1
30
+ type: f1
31
+ value: 0.7018599562363238
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.8296796355048782
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # ner
41
 
42
+ This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on the hts98/UIT dataset.
43
  It achieves the following results on the evaluation set:
44
+ - Loss: 1.8209
45
+ - Precision: 0.6879
46
+ - Recall: 0.7164
47
+ - F1: 0.7019
48
+ - Accuracy: 0.8297
49
 
50
  ## Model description
51