polemo_intensity / model_script.py
hplisiecki's picture
Upload model_script.py
ec429d3 verified
raw
history blame
2.18 kB
import torch
import torch.nn as nn
from transformers import AutoModel
class Model(torch.nn.Module):
def __init__(self, model_dir, dropout=0.2, hidden_dim=768):
"""
Initialize the model.
:param model_name: the name of the model
:param metric_names: the names of the metrics to use
:param dropout: the dropout rate
:param hidden_dim: the hidden dimension of the model
"""
super(Model, self).__init__()
self.metric_names = ['Happiness', 'Sadness', 'Anger', 'Disgust', 'Fear', 'Pride', 'Valence', 'Arousal']
self.bert = AutoModel.from_pretrained(model_dir)
for name in self.metric_names:
setattr(self, name, nn.Linear(hidden_dim, 1))
setattr(self, 'l_1_' + name, nn.Linear(hidden_dim, hidden_dim))
self.layer_norm = nn.LayerNorm(hidden_dim)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.sigmoid = nn.Sigmoid()
def forward(self, input_id, mask):
"""
Forward pass of the model.
:param args: the inputs
:return: the outputs
"""
_, x = self.bert(input_ids = input_id, attention_mask=mask, return_dict=False)
output = self.rate_embedding(x)
return output
def rate_embedding(self, x):
output_ratings = []
for name in self.metric_names:
first_layer = self.relu(self.dropout(self.layer_norm(getattr(self, 'l_1_' + name)(x) + x)))
second_layer = self.sigmoid(getattr(self, name)(first_layer))
output_ratings.append(second_layer)
return output_ratings
def save_pretrained(self, save_directory):
self.bert.save_pretrained(save_directory)
torch.save(self.state_dict(), f'{save_directory}/pytorch_model.bin')
@classmethod
def from_pretrained(cls, model_dir, dropout=0.2, hidden_dim=768):
model = cls(model_dir, dropout, hidden_dim)
state_dict = torch.load(f'{model_dir}/pytorch_model.bin', map_location=torch.device('cpu'))
model.load_state_dict(state_dict)
return model