hookzeng commited on
Commit
ad91b10
1 Parent(s): 26ac231

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -687.97 +/- 346.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 4.77 +/- 138.58
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6348a7cca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6348a7cd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6348a7cdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6348a7ce50>", "_build": "<function ActorCriticPolicy._build at 0x7f6348a7cee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6348a7cf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6348a01040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6348a010d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6348a01160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6348a011f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6348a01280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6348a01310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6348a7d1b0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 2048, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712321432276051497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBQAj5epIc/5YK4PhVsLL8Kn7M9s65CPgAAAAAAAAAAGkgHvs0ylD91hzi/IG1Fv2veqz0Muo49AAAAAAAAAACN6pq9jKi7P6oqG7/QIgk+e/jEPUxwDD4AAAAAAAAAAGba5T0EDKA/LqedPnbU+77r9Fa+BNqNvQAAAAAAAAAA65tRv39ybD54IqO/jM+kvxzOKj9IKGc+AAAAAAAAAABgYyy+bFe7P11o5r5dnp6+6CaNPbVSLz4AAAAAAAAAAHOPqb6iQ78/WDhbv0V4k742AhU/vpOXPgAAAAAAAAAAAPDGuxBttD8Xbh2/blh0vZO+5jsapA4+AAAAAAAAAAAzH188aF2/P6nNFT7aW4U+vid7vcIT570AAAAAAAAAADNaF73Xb5k/wri5vbTqz75lueK9/rX3vQAAAAAAAAAAAAB/upeVjj/r0VC88pYsv2dxF71+Xwc9AAAAAAAAAACaCcg7YjOjP5svlDr/r96+5kmaPWNrED4AAAAAAAAAAM0aPjwv2pk/zhixPBw26b4Ib7e9IwF+vAAAAAAAAAAAal3UPvbcjT4oiDk/6uqmvyp4jT0eq569AAAAAAAAAACNedq+Ay2uPpbgNL8dNpS/SYJtPbtNZb4AAAAAAAAAAAAtpb2FBn0/PkW9voyBf7+/Kzk+C53vPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHSSIkJKJ2uMAWyUS1iMAXSURz/xnOKO1fE5dX2UKGgGR8BlHJHd43WGaAdLgWgIRz/xoa5wwTM8dX2UKGgGR8Bq9Pci4axYaAdLc2gIRz/xoPf8/D+BdX2UKGgGR8BRpXgDRtxdaAdLUGgIRz/xrulXRw6ydX2UKGgGR8ByrbwqiGnGaAdLY2gIRz/xydSVGCqZdX2UKGgGR8BcQfDP4VRDaAdLYGgIRz/xy4e9zwMIdX2UKGgGR8BUwddE9dNWaAdLP2gIRz/x9FSbYsd1dX2UKGgGR8B30fXFtKqXaAdLZ2gIRz/yJULlV94NdX2UKGgGR8BqteXkYGdJaAdLXmgIRz/ygO8TSLIgdX2UKGgGR8BQle2Zy+6AaAdLQGgIRz/ymdy1eBxxdX2UKGgGR8A0UKifxtpFaAdLXWgIRz/ymldkauOkdX2UKGgGR8BRkB3NcGC7aAdLQmgIRz/y//aQFLWadX2UKGgGR8BHaLsrupjuaAdLQGgIRz/zUVnEl3QldX2UKGgGR8BYFh3aBZp0aAdLXmgIRz/zYCyQgcLjdX2UKGgGR8BbtwCSzPa+aAdLXGgIRz/zdRm9QGfPdX2UKGgGR8Bbjd8qnWJ8aAdLPWgIRz/zpaiblRxcdX2UKGgGR8B9klVCHARDaAdLVmgIRz/zuHWSU1Q7dX2UKGgGR8B6fFhd+ocaaAdLW2gIRz/z3MhX8wYcdX2UKGgGR8Bfzf1YhdMTaAdLT2gIRz/z51aGHpKSdX2UKGgGR8BXiEidJ8OTaAdLNmgIRz/z4/Z/Tb35dX2UKGgGR8BbVeBQN0/4aAdLYGgIRz/z8MZxaPjodX2UKGgGR8B+u5psXSBtaAdLXGgIRz/z83++/QBxdX2UKGgGR8BceiRbKRuCaAdLdmgIRz/0GHck+otMdX2UKGgGR8BujxKFqSHNaAdLZmgIRz/0IhMajvd/dX2UKGgGR8B3k79rGipOaAdLZ2gIRz/0S8BdUsFudX2UKGgGR8BlddWuHN5daAdLW2gIRz/00+PikwevdX2UKGgGR8BRt8zl90A+aAdLPmgIRz/1M5bQkX1rdX2UKGgGR8BWhBsImgJ1aAdLSWgIRz/1aA8SwnpjdX2UKGgGR8BmBcRUWEbpaAdLbGgIRz/1rGR3eN1hdX2UKGgGR8BqF8liSaE0aAdLX2gIRz/1y6cy31BddX2UKGgGR8BXoic0+C9RaAdLTWgIRz/10V8CxNZedX2UKGgGR8Bxu4y/KyOaaAdLZmgIRz/13N1QqI8AdX2UKGgGR8Boj7mEGqxUaAdLU2gIRz/16Jyhi9ZidX2UKGgGR8A30hvBJqZdaAdLUmgIRz/15xJd0JWvdX2UKGgGR8BgU9Iqbz9TaAdLS2gIRz/1/BJqZc9odX2UKGgGR8B0cijesPrfaAdLWWgIRz/2Gk8A7xNJdX2UKGgGR8BnQezt1IRRaAdLi2gIRz/2FefI0ZWJdX2UKGgGR8Bta+i1y/9HaAdLVGgIRz/2KzE74i5edX2UKGgGR8BYdIUzsQd0aAdLdmgIRz/2TnJT2nKodX2UKGgGR8Blrx15jYqYaAdLRGgIRz/2iOq//NqydX2UKGgGR8BoC0H0K7ZnaAdLb2gIRz/2oZ/CqIacdX2UKGgGR8Bnntx0dRzjaAdLd2gIRz/3Lmhdt2s8dX2UKGgGR8BV09kFwDNhaAdLUmgIRz/3OJcgQpWndX2UKGgGR8BZjA1FYuCgaAdLTWgIRz/3TOoo/iYLdX2UKGgGR8Biw3crRSgoaAdLSGgIRz/3bPQfIS13dX2UKGgGR8BZmRy4nWrfaAdLPmgIRz/3c5CF9KEndX2UKGgGR8BOTC83++/QaAdLRWgIRz/3j3Zf2K2sdX2UKGgGR8BUwXjABT4taAdLSWgIRz/3lZ1V5rxidX2UKGgGR8BZXcLSeAd5aAdLTmgIRz/3vZAY51eTdX2UKGgGR8BcUmGATZg5aAdLSmgIRz/33iNsFdLQdX2UKGgGR8BhCppN9H+ZaAdLTmgIRz/38c+7lJYldX2UKGgGR8BSFnOjZcs2aAdLYGgIRz/4ILkS26TXdX2UKGgGR8Bajmg3974SaAdLS2gIRz/4G2b5M10ldX2UKGgGR8B08kf0VafSaAdLYGgIRz/4Nk8RtgrpdX2UKGgGR8ByDvnuAqd6aAdLZmgIRz/4lX3g1m8NdX2UKGgGR8AxivMKTjebaAdLQmgIRz/40V32VVxTdX2UKGgGR8BiYmZAprk9aAdLaGgIRz/5CXyAhB7edX2UKGgGR8CBUmAwPAfuaAdLb2gIRz/5URSP2f03dX2UKGgGR8Bood9lVcUuaAdLTmgIRz/5VglWwNb1dX2UKGgGR8BkMhMvh60IaAdLPWgIRz/5bqUu+RHPdX2UKGgGR8BwBF5gPVd5aAdLTmgIRz/5eWGATZg5dX2UKGgGR8BxkFhqj8DTaAdLYWgIRz/5r4WUKRdQdX2UKGgGR8B3kCBpYcNpaAdLWmgIRz/5quSwGGEgdX2UKGgGR8BwFtUWEbo9aAdLZmgIRz/5tNvfj0cwdX2UKGgGR8BgzLho/RmcaAdLT2gIRz/5zu4PPLPldX2UKGgGR8BZHb52yLQ5aAdLQWgIRz/50VrRBu4xdX2UKGgGR8BltR6Y3Ns4aAdLTGgIRz/593wCr92pdX2UKGgGR8B0oJ5nlGPQaAdLaGgIRz/6RaC+UQkHdX2UKGgGR8BhjI6U7jkuaAdLcWgIRz/6VmJ3xFy8dX2UKGgGR8BrR4J/oaDPaAdLYGgIRz/6eEVWS2YwdX2UKGgGR8BRyPSYw7DEaAdLVmgIRz/6sbedkJ8fdX2UKGgGR8Babmf9P1tgaAdLZWgIRz/7S3ocJdB0dX2UKGgGR8BfbGpQ1rIpaAdLRGgIRz/7TltCRfWudX2UKGgGR8BzyW2nbZezaAdLXGgIRz/7TXBguyu7dX2UKGgGR8B7gPX18LKFaAdLWWgIRz/7gU1yeZogdX2UKGgGR8BcppUtI066aAdLUGgIRz/7pw84gieNdX2UKGgGR8BxWcYHgP3BaAdLXWgIRz/7t74SHuZ1dX2UKGgGR8BUpxLXcxj8aAdLSmgIRz/7ycCo0hvBdX2UKGgGR8Bu8H/tIClraAdLVGgIRz/74IF/x2B8dX2UKGgGR8BCqBUJfICEaAdLOmgIRz/7677Kq4pddX2UKGgGR8BiFb3mFJxvaAdLW2gIRz/8CydFvybydX2UKGgGR8BpBIiNbTttaAdLbWgIRz/8CflIVdondX2UKGgGR8ByHntTkyULaAdLY2gIRz/8IC6pYLb6dX2UKGgGR8BhUhdt2s7uaAdLTGgIRz/8Nucc2itadX2UKGgGR8B26WV3Ux20aAdLXmgIRz/8kELYwqRVdX2UKGgGR8Bi+mSMcZLqaAdLiGgIRz/8xw6ySmqHdX2UKGgGR8BbBJ1ie/YbaAdLR2gIRz/9BLsa86FNdX2UKGgGR8BkEA77sOXmaAdLR2gIRz/9N0zTF2mpdX2UKGgGR8Bh8tGEwnIAaAdLRWgIRz/9Tw2ETQE7dX2UKGgGR8BXuHdoFmnPaAdLP2gIRz/9aVyFPBSDdX2UKGgGR8BguwxSHdoGaAdLemgIRz/9q9sabWmQdX2UKGgGR8BJ5DtPYWcjaAdLPGgIRz/9ppJwsGxEdX2UKGgGR8B1Ay11GLDRaAdLZ2gIRz/90mlZX+2mdX2UKGgGR8Boswao/A0saAdLV2gIRz/90ornTy8SdX2UKGgGR8BTU6gmJFb3aAdLVWgIRz/916mfoRqXdX2UKGgGR8Bm8Pdl/YrbaAdLTmgIRz/9/oFFDv3KdX2UKGgGR8Bi96BGx2SuaAdLWWgIRz/+BI4EOiFkdX2UKGgGR8Bh6QQ+UyHmaAdLdGgIRz/+JBPbfxc3dX2UKGgGR8BYWaUu+RHPaAdLWWgIRz/+LHZK3/gjdX2UKGgGR8BkcY57w8W9aAdLQ2gIRz/+ZpSJj2BbdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.6, "gae_lambda": 0.48, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.2.0-39-generic-x86_64-with-glibc2.17 # 40~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 16 10:53:04 UTC 2", "Python": "3.8.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.2+cu121", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe300ffdca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe300ffdd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe300ffddc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe300ffde50>", "_build": "<function ActorCriticPolicy._build at 0x7fe300ffdee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe300ffdf70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe300f80040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe300f800d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe300f80160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe300f801f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe300f80280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe300f80310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe300ffb360>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712321505613798384, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPcsbxxg7E/NucGvtGWEb2Dnq08DbcDvQAAAAAAAAAAzYxyOlxssj/rgGc9a7tOvRdtib5tPcM9AAAAAAAAAAC65Cw+9oBzvKjtijzUX4U8jNR9vaY9ab0AAIA/AACAP5rQqTwgzpc/mzMVPmUSur5OkAS/wdm6PgAAAAAAAAAAAHr+PCjvrz/XDCI/i9aKvkFh97wbe/C9AAAAAAAAAADzJ6E95O+gP1WO/D3r/wo9/gChPjUdET8AAAAAAAAAAFpkoT0PBUI/KBjXPgIRYr65dH08YgwuPwAAAAAAAAAAmpFVO6zztT/GhrU8/4F0vIGsfj1AX5U+AAAAAAAAAABdEVO+3jtaP7Zng750UPK+JxsEP91DGb8AAAAAAAAAALJ8g76PfGO86oS9un3fwrin9c091ZzkOQAAgD8AAIA/GqNdvRRUrbrjjSI3PppzMvtAbjpcSzi2AACAPwAAgD/guQo+UrKXu7rdszkamQW3XPzRvPuh4bgAAIA/AACAP5rZdrxGBb8/PeQ7PEZxDDsMHA69Y8hGPQAAAAAAAAAAGAa+vuwf7T5oj+O+IG8Uv1On2T4Sx0K/AAAAAAAAAABNklI+H16mPOl1B75vxcO7qJ0yvRMCIb8AAIA/AAAAAAYhKb6OXXk/6AIBPm/qzziZovc+lRwvPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGbdjeKsMiOMAWyUTS0BjAF0lEdAeIRzQeFL4HV9lChoBkdAakonXNC7b2gHTcUCaAhHQHiGFyaNMoN1fZQoaAZHwErNy5I6KcdoB0vzaAhHQHiGUehf0Ep1fZQoaAZHQER4DHOryUdoB00BAWgIR0B4ikxQBPsSdX2UKGgGR8BoJzu4PPLQaAdNCgFoCEdAeIr9dNWU8nV9lChoBkfAaGl5KODJ2mgHTUIBaAhHQHiLh9G7SRd1fZQoaAZHQF5dWEK3NLVoB03oA2gIR0B4kYt6HCXQdX2UKGgGR0BZprfLs8gZaAdN6ANoCEdAeJPrGBFuvXV9lChoBkfAb4ZAOavzOGgHTSQCaAhHQHipGMS9M9N1fZQoaAZHwG2T7jT8YQ9oB01JAWgIR0B4rgrRSgoPdX2UKGgGR8BEZzf779AHaAdNPgFoCEdAeK6tJnQIEHV9lChoBkdAbBA0waisXGgHTR8CaAhHQHixq8L8aXN1fZQoaAZHwFSiCJGe+VVoB00xAWgIR0B4supT/ACXdX2UKGgGR0BUP8PnSv1UaAdN6ANoCEdAeLNw6hg3LnV9lChoBkdAU8PVFx4pt2gHTegDaAhHQHi0r9AHE/B1fZQoaAZHQDNRfVqesgdoB0vxaAhHQHi07iuMdcV1fZQoaAZHwENKKrq+rU9oB01nAWgIR0B4uBQSBbwCdX2UKGgGR8Btp1ndweeWaAdNiwFoCEdAeMOnKnvUjXV9lChoBkfAZDjqqwQlKWgHS9xoCEdAeNw25xzaK3V9lChoBkdAX+5rYXfqHGgHTegDaAhHQHjfD9n9Nvh1fZQoaAZHQGvrI+fRNRFoB01fAmgIR0B435/I8yN5dX2UKGgGR0Bnr2epXIU8aAdNowJoCEdAeOF8Hv+fiHV9lChoBkfAQP56yB06o2gHS/5oCEdAeORu7pV0cXV9lChoBkfAYvXjMFEApGgHTQ4BaAhHQHjmwY+B6KN1fZQoaAZHwG2Ys/pt78hoB01RAWgIR0B46skLQXyidX2UKGgGR0BqbQ+yJKraaAdNsAJoCEdAeO5/giu+y3V9lChoBkfAUbKbx3FDOWgHTeQBaAhHQHj4DJIUahp1fZQoaAZHwCPl07r9l3BoB0vraAhHQHj4fovBacJ1fZQoaAZHwDL9SBK+SKZoB00/AWgIR0B4/hECvHLidX2UKGgGR8BwAMVBUrCnaAdNFgJoCEdAeQUeiBXjl3V9lChoBkfAaH3H/cWTHWgHTRkBaAhHQHkGVMRHww11fZQoaAZHwGm9aBAfMfRoB00cAWgIR0B5CQaJhvzfdX2UKGgGR8BLQ7ZvkzXSaAdNUwFoCEdAeQoSyt3fRHV9lChoBkdAcbEKQaJhv2gHTWsBaAhHQHkKel9Brvd1fZQoaAZHQFjlPUKArhBoB03oA2gIR0B5C0KBun/DdX2UKGgGR8BncGeFtbcHaAdNPQFoCEdAeROgv114gXV9lChoBkfAay3N2TxG2GgHTQQBaAhHQHkWFzEJjUd1fZQoaAZHQF9QqTr3TNNoB03oA2gIR0B5GHU4JeE7dX2UKGgGR0BsQl89fTkRaAdNpgFoCEdAeRu6jFhod3V9lChoBkfAZAySFGoaUGgHTSsBaAhHQHkfq0QbuMN1fZQoaAZHQGcVRQizLOloB01bAmgIR0B5JZsqJ/G3dX2UKGgGR8Bw9YiW3Sa3aAdNkwFoCEdAeSaisXBP9HV9lChoBkfAaxRVcUuct2gHTSsBaAhHQHkp6EWZZ0V1fZQoaAZHwETtTzd1uBNoB004AWgIR0B5LVHtnf2sdX2UKGgGR8BNWnied07saAdNTAFoCEdAeS6tu1ndwnV9lChoBkdAaR6fK6nR9mgHTZ4BaAhHQHkymVeKKpF1fZQoaAZHQGo/fHggow5oB02fA2gIR0B5NqF49ovjdX2UKGgGR0BCq8Sf16E8aAdN6ANoCEdAeTt7CSA6MnV9lChoBkdAWNKhmGucMGgHTegDaAhHQHk7uaz/p+t1fZQoaAZHwGu6cUVSGahoB00SAWgIR0B5PlMWXTmXdX2UKGgGR8BJp3ZoPCl8aAdNPAFoCEdAeT7AJ9iMHnV9lChoBkfAbI2WszVMEmgHTYsBaAhHQHk/SKR+z+p1fZQoaAZHwGZuqp1ie/ZoB004AWgIR0B5Rq+0w8GLdX2UKGgGR0BpduQZGax5aAdNVgJoCEdAeUdWeYlY2nV9lChoBkfAax/ZaFEiMmgHTUoBaAhHQHlJWx6fJ3h1fZQoaAZHwDVENutOmBRoB00FAWgIR0B5Sik2xY7rdX2UKGgGR0Bncnr6ciGGaAdNcQJoCEdAeV8U1AJLNHV9lChoBkfAa8Uit7rs0GgHS+5oCEdAeWDb2lEZznV9lChoBkdAbUQ4smOU+2gHTR4CaAhHQHlhfrjYI0J1fZQoaAZHwFGAh1Tzd1xoB00LAmgIR0B5YblLeyiVdX2UKGgGR8Bnl4co6S1WaAdNeAFoCEdAeWS+yquKXXV9lChoBkdANbMkMTewcGgHS/BoCEdAeWahOP/7znV9lChoBkfAacGUmD15B2gHTUEBaAhHQHlqjcRDkU91fZQoaAZHwG27zXrdFfBoB01qAWgIR0B5cXLX+VC5dX2UKGgGR8BoYXDUExIraAdNGwFoCEdAeXGsqJ/G2nV9lChoBkfAZNiuU2UB4mgHTTkBaAhHQHl1ioS+QEJ1fZQoaAZHwGL/B8pkPMBoB0v0aAhHQHl2vjfek591fZQoaAZHwGKMJi7TUiJoB0v0aAhHQHl3jPa+N991fZQoaAZHQGTAGhmGucNoB00zAmgIR0B5e5/QSi/PdX2UKGgGR0BtiWgJ1JUYaAdNzQJoCEdAeYOq9GqgiHV9lChoBkfAaOgHmA9V3mgHTTcBaAhHQHmD/8/D+BJ1fZQoaAZHQG9VF23azu5oB01wAWgIR0B5hXPBzmwJdX2UKGgGR0Buqpr30wrUaAdNlQFoCEdAeYYMgU1yenV9lChoBkdAa8p/J/5Ly2gHTdMBaAhHQHmIXgtOEdx1fZQoaAZHwE0elgMMI/toB03rAWgIR0B5i1fTkQwsdX2UKGgGR0Buo6YLLIPtaAdNhAJoCEdAeY4aoMrmQ3V9lChoBkfAbUs78Nx2jmgHTZQBaAhHQHmO8u8K5TZ1fZQoaAZHQGyT66J66atoB03EAmgIR0B5kUPSUkfLdX2UKGgGR8BoEVbor4FiaAdNPQFoCEdAeZGff4yoGnV9lChoBkfAZeCy0rsjV2gHTScBaAhHQHmT/DLr5Zd1fZQoaAZHwGnyYaP0Zm9oB015AWgIR0B5lgXWOIZZdX2UKGgGR8Bnqhmwqy4XaAdNIAFoCEdAeZZmJFb3XnV9lChoBkfAaOKBe5WilGgHTV0BaAhHQHmXheHBUJh1fZQoaAZHQHAgvRVp9JBoB01wAWgIR0B5mBJQLux9dX2UKGgGR8A5/XA/LTx5aAdL7WgIR0B5mPmaH9FXdX2UKGgGR8A3n912aDwpaAdL/GgIR0B5mQxqO939dX2UKGgGR8AS9QCSzPa+aAdNAwFoCEdAeZlPu5SWJXV9lChoBkfAO9nxnWattGgHS/toCEdAeZvEt/WlM3V9lChoBkfAZt7jXFtKqWgHTS8BaAhHQHmiWUjcEeR1fZQoaAZHwGRrgT7EYO5oB0vnaAhHQHmngRsdkrh1fZQoaAZHwGdsSNGViWpoB01CAWgIR0B5p6UOd5IIdX2UKGgGR8BwnCp4rz5HaAdNYAFoCEdAeamhhH9WIXV9lChoBkdAbU+BnSOR1WgHTUEBaAhHQHmqL9If8uV1fZQoaAZHwGZAaTnq3VloB00VAWgIR0B5rFVghKUWdX2UKGgGR8A4tTOPeYUnaAdNOgFoCEdAeazrRjSXt3V9lChoBkfAZmatz0Yj0WgHS/loCEdAea1B0ZFXrHV9lChoBkfAaa9DPWxyGWgHTSUBaAhHQHmv5m29cr11fZQoaAZHwGeLwc5sCT5oB01FAWgIR0B5tBMDfWMCdX2UKGgGR8BjL4YtQKrraAdL42gIR0B5txshxHXmdX2UKGgGR8BqvRRXOnl5aAdNQQFoCEdAebgBCUornXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.6, "gae_lambda": 0.48, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4RDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL2hvb2t6ZW5nL2FuYWNvbmRhMy9lbnZzL3B5MzgvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.2.0-39-generic-x86_64-with-glibc2.17 # 40~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Nov 16 10:53:04 UTC 2", "Python": "3.8.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.2+cu121", "GPU Enabled": "False", "Numpy": "1.24.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.28.1"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8973a5d82add9665db321a5e918ae3bd61bdaa2c1ac7b39ed4ec23d90ebeea54
3
- size 147443
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7c974677e7b67824e4e0c405e657d97b9b0365fc222e04a043471cfa26aab19
3
+ size 147583
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6348a7cca0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6348a7cd30>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6348a7cdc0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6348a7ce50>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f6348a7cee0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6348a7cf70>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6348a01040>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6348a010d0>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6348a01160>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6348a011f0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6348a01280>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6348a01310>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc_data object at 0x7f6348a7d1b0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 16384,
25
- "_total_timesteps": 2048,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1712321432276051497,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBQAj5epIc/5YK4PhVsLL8Kn7M9s65CPgAAAAAAAAAAGkgHvs0ylD91hzi/IG1Fv2veqz0Muo49AAAAAAAAAACN6pq9jKi7P6oqG7/QIgk+e/jEPUxwDD4AAAAAAAAAAGba5T0EDKA/LqedPnbU+77r9Fa+BNqNvQAAAAAAAAAA65tRv39ybD54IqO/jM+kvxzOKj9IKGc+AAAAAAAAAABgYyy+bFe7P11o5r5dnp6+6CaNPbVSLz4AAAAAAAAAAHOPqb6iQ78/WDhbv0V4k742AhU/vpOXPgAAAAAAAAAAAPDGuxBttD8Xbh2/blh0vZO+5jsapA4+AAAAAAAAAAAzH188aF2/P6nNFT7aW4U+vid7vcIT570AAAAAAAAAADNaF73Xb5k/wri5vbTqz75lueK9/rX3vQAAAAAAAAAAAAB/upeVjj/r0VC88pYsv2dxF71+Xwc9AAAAAAAAAACaCcg7YjOjP5svlDr/r96+5kmaPWNrED4AAAAAAAAAAM0aPjwv2pk/zhixPBw26b4Ib7e9IwF+vAAAAAAAAAAAal3UPvbcjT4oiDk/6uqmvyp4jT0eq569AAAAAAAAAACNedq+Ay2uPpbgNL8dNpS/SYJtPbtNZb4AAAAAAAAAAAAtpb2FBn0/PkW9voyBf7+/Kzk+C53vPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -7.0,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHSSIkJKJ2uMAWyUS1iMAXSURz/xnOKO1fE5dX2UKGgGR8BlHJHd43WGaAdLgWgIRz/xoa5wwTM8dX2UKGgGR8Bq9Pci4axYaAdLc2gIRz/xoPf8/D+BdX2UKGgGR8BRpXgDRtxdaAdLUGgIRz/xrulXRw6ydX2UKGgGR8ByrbwqiGnGaAdLY2gIRz/xydSVGCqZdX2UKGgGR8BcQfDP4VRDaAdLYGgIRz/xy4e9zwMIdX2UKGgGR8BUwddE9dNWaAdLP2gIRz/x9FSbYsd1dX2UKGgGR8B30fXFtKqXaAdLZ2gIRz/yJULlV94NdX2UKGgGR8BqteXkYGdJaAdLXmgIRz/ygO8TSLIgdX2UKGgGR8BQle2Zy+6AaAdLQGgIRz/ymdy1eBxxdX2UKGgGR8A0UKifxtpFaAdLXWgIRz/ymldkauOkdX2UKGgGR8BRkB3NcGC7aAdLQmgIRz/y//aQFLWadX2UKGgGR8BHaLsrupjuaAdLQGgIRz/zUVnEl3QldX2UKGgGR8BYFh3aBZp0aAdLXmgIRz/zYCyQgcLjdX2UKGgGR8BbtwCSzPa+aAdLXGgIRz/zdRm9QGfPdX2UKGgGR8Bbjd8qnWJ8aAdLPWgIRz/zpaiblRxcdX2UKGgGR8B9klVCHARDaAdLVmgIRz/zuHWSU1Q7dX2UKGgGR8B6fFhd+ocaaAdLW2gIRz/z3MhX8wYcdX2UKGgGR8Bfzf1YhdMTaAdLT2gIRz/z51aGHpKSdX2UKGgGR8BXiEidJ8OTaAdLNmgIRz/z4/Z/Tb35dX2UKGgGR8BbVeBQN0/4aAdLYGgIRz/z8MZxaPjodX2UKGgGR8B+u5psXSBtaAdLXGgIRz/z83++/QBxdX2UKGgGR8BceiRbKRuCaAdLdmgIRz/0GHck+otMdX2UKGgGR8BujxKFqSHNaAdLZmgIRz/0IhMajvd/dX2UKGgGR8B3k79rGipOaAdLZ2gIRz/0S8BdUsFudX2UKGgGR8BlddWuHN5daAdLW2gIRz/00+PikwevdX2UKGgGR8BRt8zl90A+aAdLPmgIRz/1M5bQkX1rdX2UKGgGR8BWhBsImgJ1aAdLSWgIRz/1aA8SwnpjdX2UKGgGR8BmBcRUWEbpaAdLbGgIRz/1rGR3eN1hdX2UKGgGR8BqF8liSaE0aAdLX2gIRz/1y6cy31BddX2UKGgGR8BXoic0+C9RaAdLTWgIRz/10V8CxNZedX2UKGgGR8Bxu4y/KyOaaAdLZmgIRz/13N1QqI8AdX2UKGgGR8Boj7mEGqxUaAdLU2gIRz/16Jyhi9ZidX2UKGgGR8A30hvBJqZdaAdLUmgIRz/15xJd0JWvdX2UKGgGR8BgU9Iqbz9TaAdLS2gIRz/1/BJqZc9odX2UKGgGR8B0cijesPrfaAdLWWgIRz/2Gk8A7xNJdX2UKGgGR8BnQezt1IRRaAdLi2gIRz/2FefI0ZWJdX2UKGgGR8Bta+i1y/9HaAdLVGgIRz/2KzE74i5edX2UKGgGR8BYdIUzsQd0aAdLdmgIRz/2TnJT2nKodX2UKGgGR8Blrx15jYqYaAdLRGgIRz/2iOq//NqydX2UKGgGR8BoC0H0K7ZnaAdLb2gIRz/2oZ/CqIacdX2UKGgGR8Bnntx0dRzjaAdLd2gIRz/3Lmhdt2s8dX2UKGgGR8BV09kFwDNhaAdLUmgIRz/3OJcgQpWndX2UKGgGR8BZjA1FYuCgaAdLTWgIRz/3TOoo/iYLdX2UKGgGR8Biw3crRSgoaAdLSGgIRz/3bPQfIS13dX2UKGgGR8BZmRy4nWrfaAdLPmgIRz/3c5CF9KEndX2UKGgGR8BOTC83++/QaAdLRWgIRz/3j3Zf2K2sdX2UKGgGR8BUwXjABT4taAdLSWgIRz/3lZ1V5rxidX2UKGgGR8BZXcLSeAd5aAdLTmgIRz/3vZAY51eTdX2UKGgGR8BcUmGATZg5aAdLSmgIRz/33iNsFdLQdX2UKGgGR8BhCppN9H+ZaAdLTmgIRz/38c+7lJYldX2UKGgGR8BSFnOjZcs2aAdLYGgIRz/4ILkS26TXdX2UKGgGR8Bajmg3974SaAdLS2gIRz/4G2b5M10ldX2UKGgGR8B08kf0VafSaAdLYGgIRz/4Nk8RtgrpdX2UKGgGR8ByDvnuAqd6aAdLZmgIRz/4lX3g1m8NdX2UKGgGR8AxivMKTjebaAdLQmgIRz/40V32VVxTdX2UKGgGR8BiYmZAprk9aAdLaGgIRz/5CXyAhB7edX2UKGgGR8CBUmAwPAfuaAdLb2gIRz/5URSP2f03dX2UKGgGR8Bood9lVcUuaAdLTmgIRz/5VglWwNb1dX2UKGgGR8BkMhMvh60IaAdLPWgIRz/5bqUu+RHPdX2UKGgGR8BwBF5gPVd5aAdLTmgIRz/5eWGATZg5dX2UKGgGR8BxkFhqj8DTaAdLYWgIRz/5r4WUKRdQdX2UKGgGR8B3kCBpYcNpaAdLWmgIRz/5quSwGGEgdX2UKGgGR8BwFtUWEbo9aAdLZmgIRz/5tNvfj0cwdX2UKGgGR8BgzLho/RmcaAdLT2gIRz/5zu4PPLPldX2UKGgGR8BZHb52yLQ5aAdLQWgIRz/50VrRBu4xdX2UKGgGR8BltR6Y3Ns4aAdLTGgIRz/593wCr92pdX2UKGgGR8B0oJ5nlGPQaAdLaGgIRz/6RaC+UQkHdX2UKGgGR8BhjI6U7jkuaAdLcWgIRz/6VmJ3xFy8dX2UKGgGR8BrR4J/oaDPaAdLYGgIRz/6eEVWS2YwdX2UKGgGR8BRyPSYw7DEaAdLVmgIRz/6sbedkJ8fdX2UKGgGR8Babmf9P1tgaAdLZWgIRz/7S3ocJdB0dX2UKGgGR8BfbGpQ1rIpaAdLRGgIRz/7TltCRfWudX2UKGgGR8BzyW2nbZezaAdLXGgIRz/7TXBguyu7dX2UKGgGR8B7gPX18LKFaAdLWWgIRz/7gU1yeZogdX2UKGgGR8BcppUtI066aAdLUGgIRz/7pw84gieNdX2UKGgGR8BxWcYHgP3BaAdLXWgIRz/7t74SHuZ1dX2UKGgGR8BUpxLXcxj8aAdLSmgIRz/7ycCo0hvBdX2UKGgGR8Bu8H/tIClraAdLVGgIRz/74IF/x2B8dX2UKGgGR8BCqBUJfICEaAdLOmgIRz/7677Kq4pddX2UKGgGR8BiFb3mFJxvaAdLW2gIRz/8CydFvybydX2UKGgGR8BpBIiNbTttaAdLbWgIRz/8CflIVdondX2UKGgGR8ByHntTkyULaAdLY2gIRz/8IC6pYLb6dX2UKGgGR8BhUhdt2s7uaAdLTGgIRz/8Nucc2itadX2UKGgGR8B26WV3Ux20aAdLXmgIRz/8kELYwqRVdX2UKGgGR8Bi+mSMcZLqaAdLiGgIRz/8xw6ySmqHdX2UKGgGR8BbBJ1ie/YbaAdLR2gIRz/9BLsa86FNdX2UKGgGR8BkEA77sOXmaAdLR2gIRz/9N0zTF2mpdX2UKGgGR8Bh8tGEwnIAaAdLRWgIRz/9Tw2ETQE7dX2UKGgGR8BXuHdoFmnPaAdLP2gIRz/9aVyFPBSDdX2UKGgGR8BguwxSHdoGaAdLemgIRz/9q9sabWmQdX2UKGgGR8BJ5DtPYWcjaAdLPGgIRz/9ppJwsGxEdX2UKGgGR8B1Ay11GLDRaAdLZ2gIRz/90mlZX+2mdX2UKGgGR8Boswao/A0saAdLV2gIRz/90ornTy8SdX2UKGgGR8BTU6gmJFb3aAdLVWgIRz/916mfoRqXdX2UKGgGR8Bm8Pdl/YrbaAdLTmgIRz/9/oFFDv3KdX2UKGgGR8Bi96BGx2SuaAdLWWgIRz/+BI4EOiFkdX2UKGgGR8Bh6QQ+UyHmaAdLdGgIRz/+JBPbfxc3dX2UKGgGR8BYWaUu+RHPaAdLWWgIRz/+LHZK3/gjdX2UKGgGR8BkcY57w8W9aAdLQ2gIRz/+ZpSJj2BbdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 4,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe300ffdca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe300ffdd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe300ffddc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe300ffde50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe300ffdee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe300ffdf70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe300f80040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe300f800d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe300f80160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe300f801f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe300f80280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe300f80310>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fe300ffb360>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1712321505613798384,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPcsbxxg7E/NucGvtGWEb2Dnq08DbcDvQAAAAAAAAAAzYxyOlxssj/rgGc9a7tOvRdtib5tPcM9AAAAAAAAAAC65Cw+9oBzvKjtijzUX4U8jNR9vaY9ab0AAIA/AACAP5rQqTwgzpc/mzMVPmUSur5OkAS/wdm6PgAAAAAAAAAAAHr+PCjvrz/XDCI/i9aKvkFh97wbe/C9AAAAAAAAAADzJ6E95O+gP1WO/D3r/wo9/gChPjUdET8AAAAAAAAAAFpkoT0PBUI/KBjXPgIRYr65dH08YgwuPwAAAAAAAAAAmpFVO6zztT/GhrU8/4F0vIGsfj1AX5U+AAAAAAAAAABdEVO+3jtaP7Zng750UPK+JxsEP91DGb8AAAAAAAAAALJ8g76PfGO86oS9un3fwrin9c091ZzkOQAAgD8AAIA/GqNdvRRUrbrjjSI3PppzMvtAbjpcSzi2AACAPwAAgD/guQo+UrKXu7rdszkamQW3XPzRvPuh4bgAAIA/AACAP5rZdrxGBb8/PeQ7PEZxDDsMHA69Y8hGPQAAAAAAAAAAGAa+vuwf7T5oj+O+IG8Uv1On2T4Sx0K/AAAAAAAAAABNklI+H16mPOl1B75vxcO7qJ0yvRMCIb8AAIA/AAAAAAYhKb6OXXk/6AIBPm/qzziZovc+lRwvPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGbdjeKsMiOMAWyUTS0BjAF0lEdAeIRzQeFL4HV9lChoBkdAakonXNC7b2gHTcUCaAhHQHiGFyaNMoN1fZQoaAZHwErNy5I6KcdoB0vzaAhHQHiGUehf0Ep1fZQoaAZHQER4DHOryUdoB00BAWgIR0B4ikxQBPsSdX2UKGgGR8BoJzu4PPLQaAdNCgFoCEdAeIr9dNWU8nV9lChoBkfAaGl5KODJ2mgHTUIBaAhHQHiLh9G7SRd1fZQoaAZHQF5dWEK3NLVoB03oA2gIR0B4kYt6HCXQdX2UKGgGR0BZprfLs8gZaAdN6ANoCEdAeJPrGBFuvXV9lChoBkfAb4ZAOavzOGgHTSQCaAhHQHipGMS9M9N1fZQoaAZHwG2T7jT8YQ9oB01JAWgIR0B4rgrRSgoPdX2UKGgGR8BEZzf779AHaAdNPgFoCEdAeK6tJnQIEHV9lChoBkdAbBA0waisXGgHTR8CaAhHQHixq8L8aXN1fZQoaAZHwFSiCJGe+VVoB00xAWgIR0B4supT/ACXdX2UKGgGR0BUP8PnSv1UaAdN6ANoCEdAeLNw6hg3LnV9lChoBkdAU8PVFx4pt2gHTegDaAhHQHi0r9AHE/B1fZQoaAZHQDNRfVqesgdoB0vxaAhHQHi07iuMdcV1fZQoaAZHwENKKrq+rU9oB01nAWgIR0B4uBQSBbwCdX2UKGgGR8Btp1ndweeWaAdNiwFoCEdAeMOnKnvUjXV9lChoBkfAZDjqqwQlKWgHS9xoCEdAeNw25xzaK3V9lChoBkdAX+5rYXfqHGgHTegDaAhHQHjfD9n9Nvh1fZQoaAZHQGvrI+fRNRFoB01fAmgIR0B435/I8yN5dX2UKGgGR0Bnr2epXIU8aAdNowJoCEdAeOF8Hv+fiHV9lChoBkfAQP56yB06o2gHS/5oCEdAeORu7pV0cXV9lChoBkfAYvXjMFEApGgHTQ4BaAhHQHjmwY+B6KN1fZQoaAZHwG2Ys/pt78hoB01RAWgIR0B46skLQXyidX2UKGgGR0BqbQ+yJKraaAdNsAJoCEdAeO5/giu+y3V9lChoBkfAUbKbx3FDOWgHTeQBaAhHQHj4DJIUahp1fZQoaAZHwCPl07r9l3BoB0vraAhHQHj4fovBacJ1fZQoaAZHwDL9SBK+SKZoB00/AWgIR0B4/hECvHLidX2UKGgGR8BwAMVBUrCnaAdNFgJoCEdAeQUeiBXjl3V9lChoBkfAaH3H/cWTHWgHTRkBaAhHQHkGVMRHww11fZQoaAZHwGm9aBAfMfRoB00cAWgIR0B5CQaJhvzfdX2UKGgGR8BLQ7ZvkzXSaAdNUwFoCEdAeQoSyt3fRHV9lChoBkdAcbEKQaJhv2gHTWsBaAhHQHkKel9Brvd1fZQoaAZHQFjlPUKArhBoB03oA2gIR0B5C0KBun/DdX2UKGgGR8BncGeFtbcHaAdNPQFoCEdAeROgv114gXV9lChoBkfAay3N2TxG2GgHTQQBaAhHQHkWFzEJjUd1fZQoaAZHQF9QqTr3TNNoB03oA2gIR0B5GHU4JeE7dX2UKGgGR0BsQl89fTkRaAdNpgFoCEdAeRu6jFhod3V9lChoBkfAZAySFGoaUGgHTSsBaAhHQHkfq0QbuMN1fZQoaAZHQGcVRQizLOloB01bAmgIR0B5JZsqJ/G3dX2UKGgGR8Bw9YiW3Sa3aAdNkwFoCEdAeSaisXBP9HV9lChoBkfAaxRVcUuct2gHTSsBaAhHQHkp6EWZZ0V1fZQoaAZHwETtTzd1uBNoB004AWgIR0B5LVHtnf2sdX2UKGgGR8BNWnied07saAdNTAFoCEdAeS6tu1ndwnV9lChoBkdAaR6fK6nR9mgHTZ4BaAhHQHkymVeKKpF1fZQoaAZHQGo/fHggow5oB02fA2gIR0B5NqF49ovjdX2UKGgGR0BCq8Sf16E8aAdN6ANoCEdAeTt7CSA6MnV9lChoBkdAWNKhmGucMGgHTegDaAhHQHk7uaz/p+t1fZQoaAZHwGu6cUVSGahoB00SAWgIR0B5PlMWXTmXdX2UKGgGR8BJp3ZoPCl8aAdNPAFoCEdAeT7AJ9iMHnV9lChoBkfAbI2WszVMEmgHTYsBaAhHQHk/SKR+z+p1fZQoaAZHwGZuqp1ie/ZoB004AWgIR0B5Rq+0w8GLdX2UKGgGR0BpduQZGax5aAdNVgJoCEdAeUdWeYlY2nV9lChoBkfAax/ZaFEiMmgHTUoBaAhHQHlJWx6fJ3h1fZQoaAZHwDVENutOmBRoB00FAWgIR0B5Sik2xY7rdX2UKGgGR0Bncnr6ciGGaAdNcQJoCEdAeV8U1AJLNHV9lChoBkfAa8Uit7rs0GgHS+5oCEdAeWDb2lEZznV9lChoBkdAbUQ4smOU+2gHTR4CaAhHQHlhfrjYI0J1fZQoaAZHwFGAh1Tzd1xoB00LAmgIR0B5YblLeyiVdX2UKGgGR8Bnl4co6S1WaAdNeAFoCEdAeWS+yquKXXV9lChoBkdANbMkMTewcGgHS/BoCEdAeWahOP/7znV9lChoBkfAacGUmD15B2gHTUEBaAhHQHlqjcRDkU91fZQoaAZHwG27zXrdFfBoB01qAWgIR0B5cXLX+VC5dX2UKGgGR8BoYXDUExIraAdNGwFoCEdAeXGsqJ/G2nV9lChoBkfAZNiuU2UB4mgHTTkBaAhHQHl1ioS+QEJ1fZQoaAZHwGL/B8pkPMBoB0v0aAhHQHl2vjfek591fZQoaAZHwGKMJi7TUiJoB0v0aAhHQHl3jPa+N991fZQoaAZHQGTAGhmGucNoB00zAmgIR0B5e5/QSi/PdX2UKGgGR0BtiWgJ1JUYaAdNzQJoCEdAeYOq9GqgiHV9lChoBkfAaOgHmA9V3mgHTTcBaAhHQHmD/8/D+BJ1fZQoaAZHQG9VF23azu5oB01wAWgIR0B5hXPBzmwJdX2UKGgGR0Buqpr30wrUaAdNlQFoCEdAeYYMgU1yenV9lChoBkdAa8p/J/5Ly2gHTdMBaAhHQHmIXgtOEdx1fZQoaAZHwE0elgMMI/toB03rAWgIR0B5i1fTkQwsdX2UKGgGR0Buo6YLLIPtaAdNhAJoCEdAeY4aoMrmQ3V9lChoBkfAbUs78Nx2jmgHTZQBaAhHQHmO8u8K5TZ1fZQoaAZHQGyT66J66atoB03EAmgIR0B5kUPSUkfLdX2UKGgGR8BoEVbor4FiaAdNPQFoCEdAeZGff4yoGnV9lChoBkfAZeCy0rsjV2gHTScBaAhHQHmT/DLr5Zd1fZQoaAZHwGnyYaP0Zm9oB015AWgIR0B5lgXWOIZZdX2UKGgGR8Bnqhmwqy4XaAdNIAFoCEdAeZZmJFb3XnV9lChoBkfAaOKBe5WilGgHTV0BaAhHQHmXheHBUJh1fZQoaAZHQHAgvRVp9JBoB01wAWgIR0B5mBJQLux9dX2UKGgGR8A5/XA/LTx5aAdL7WgIR0B5mPmaH9FXdX2UKGgGR8A3n912aDwpaAdL/GgIR0B5mQxqO939dX2UKGgGR8AS9QCSzPa+aAdNAwFoCEdAeZlPu5SWJXV9lChoBkfAO9nxnWattGgHS/toCEdAeZvEt/WlM3V9lChoBkfAZt7jXFtKqWgHTS8BaAhHQHmiWUjcEeR1fZQoaAZHwGRrgT7EYO5oB0vnaAhHQHmngRsdkrh1fZQoaAZHwGdsSNGViWpoB01CAWgIR0B5p6UOd5IIdX2UKGgGR8BwnCp4rz5HaAdNYAFoCEdAeamhhH9WIXV9lChoBkdAbU+BnSOR1WgHTUEBaAhHQHmqL9If8uV1fZQoaAZHwGZAaTnq3VloB00VAWgIR0B5rFVghKUWdX2UKGgGR8A4tTOPeYUnaAdNOgFoCEdAeazrRjSXt3V9lChoBkfAZmatz0Yj0WgHS/loCEdAea1B0ZFXrHV9lChoBkfAaa9DPWxyGWgHTSUBaAhHQHmv5m29cr11fZQoaAZHwGeLwc5sCT5oB01FAWgIR0B5tBMDfWMCdX2UKGgGR8BjL4YtQKrraAdL42gIR0B5txshxHXmdX2UKGgGR8BqvRRXOnl5aAdNQQFoCEdAebgBCUornXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d294a189af64ec26d3fe0d5d0e804adf84f6e278a149ec48f41febbadb5b68b6
3
  size 87978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb8729bad0d8afa9ac2d6eba4cc7a7580f0e6f6c0b7a6c5e8261ba6b14ab06ba
3
  size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ae5c43c64574035730ce41ae690d50ecf4429310edffae5b0ee4ab09243c3006
3
  size 43634
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2cb2371ec5f31a8f5196323d2b194f832125fb54ee4d79974de9eb760d4368c
3
  size 43634
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -687.9715194, "std_reward": 346.5522740447993, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-05T20:50:37.832659"}
 
1
+ {"mean_reward": 4.774459000000002, "std_reward": 138.5829294597152, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-05T20:58:44.065071"}