LunarLander-v2 / config.json
homunculus's picture
First attempt at Lunar Lander for RL course
bfda4a9
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a03b519b250>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a03b519b2e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a03b519b370>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a03b519b400>", "_build": "<function ActorCriticPolicy._build at 0x7a03b519b490>", "forward": "<function ActorCriticPolicy.forward at 0x7a03b519b520>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a03b519b5b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a03b519b640>", "_predict": "<function ActorCriticPolicy._predict at 0x7a03b519b6d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a03b519b760>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a03b519b7f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a03b519b880>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a03c292a980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702073355069302999, "learning_rate": 0.00025, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoDbj7pmli8HpkUvFJukjkNEr+9Xty9OgAAgD8AAIA/5pHUPba+pj8DrSQ/lLQBv6U0eD2xx4Q+AAAAAAAAAABAssu9heu3Nqgv5LX6LZmx4kYQPHG6EjUAAIA/AACAP0Y9Cz5hY6U7jVV9vQ3H67srkyE9hdbVvAAAgD8AAIA/mghQPnEyGT5acje9F6d+vtDD3zwYklw9AAAAAAAAAAA4eKu+dDabPypKIb8lXQC/huiIvnY0AD0AAAAAAAAAAL1Y3r6p2k0+fUMIPmREZr7S5p287RuwugAAAAAAAAAAoB0hPnDitz6tuvY7jUC8vl0WtTytgV+9AAAAAAAAAACaRhS+6a0FPz6Ukj1NKMC+Pm3DO4LQCT0AAAAAAAAAAGZz1732pHy60qxUO8yNDTdwd0s6frFzugAAgD8AAAAAgBUYvWj/pD1LUzk9+7JQvm1UNzqyz6w8AAAAAAAAAABt4hK+XIVSO6pC/j0dCxW+r1DZPJJGNj0AAAAAAAAAABObHz4p7Da837IZO5eYHbmlnJa9hnxIugAAgD8AAIA/Jtjgva4Iwj7NPmM9BqJ6vi1o6jr4I908AAAAAAAAAADaDrM9w3VHuk5aNzqeGIU0HffqugP7UbkAAIA/AAAAAGCMTD7pYj+8MvYCu/3ZCTlZg6W9iwnMOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzLlhw2l2yMAWyUTUwBjAF0lEdAmWSsoQWepXV9lChoBkdAbxoBcRlH0GgHS/9oCEdAmWXHVTaTOnV9lChoBkdAYbqrOqvNeWgHTegDaAhHQJln1qk/KQt1fZQoaAZHQHBtDqOcUdtoB0v/aAhHQJlpLbmEGqx1fZQoaAZHQGs65RbbDdhoB00QAWgIR0CZajSflIVedX2UKGgGR0Bhha3y7PIGaAdN6ANoCEdAmWuFLOAy23V9lChoBkdAcHegYxcmjWgHTQ8BaAhHQJluLAaef7J1fZQoaAZHQHFPO8brC3xoB00CAWgIR0CZbttuUD+zdX2UKGgGR0Bf2/NmlImPaAdN6ANoCEdAmW9uaF23a3V9lChoBkdAbonX1anrIGgHTUEBaAhHQJlwLej2zv91fZQoaAZHQG8wHuiN83NoB014AWgIR0CZcEEQoTf0dX2UKGgGR0BroIEr5IpZaAdNDAFoCEdAmXBy6g/Ts3V9lChoBkdAbPCREnb7CWgHS/VoCEdAmXCez+m3v3V9lChoBkdAcCJyCnP3SWgHTVYBaAhHQJlxZOEdvKl1fZQoaAZHQHC5qtYB/7VoB00VAWgIR0CZs+ZuAI6bdX2UKGgGR0Bwe6sr/bTMaAdL+WgIR0CZtA/vOQhfdX2UKGgGR0BhoYVZcLSeaAdN6ANoCEdAmbY/UKArhHV9lChoBkdAY4NRFZxJd2gHTegDaAhHQJm2ntdAxBV1fZQoaAZHQG57s4LkS29oB00pAWgIR0CZtqYT0xubdX2UKGgGR0Bvck9pyp71aAdL1GgIR0CZtyT4L1EmdX2UKGgGR0Bx917jT8YRaAdNTQFoCEdAmbn5MpPRA3V9lChoBkdAcdf/ViF0xWgHS/BoCEdAmbpETlDF63V9lChoBkdAbZLyimEXcmgHS/FoCEdAmbqStJWeYnV9lChoBkdAcHIw4sEq2GgHTTYBaAhHQJm7ryvs7dV1fZQoaAZHQG67BL5AQg9oB00JAWgIR0CZvBVKf4ATdX2UKGgGR0BwiMJlar3kaAdNDgFoCEdAmcCK8QI2O3V9lChoBkdAbmJUOuq3mWgHTRUBaAhHQJnBMSxqwhZ1fZQoaAZHQG/sPszEaVFoB0vbaAhHQJnBbcGkep51fZQoaAZHQG6cyxJNCZ5oB0vqaAhHQJnCxbnoxHp1fZQoaAZHQG3I7ROUMXtoB0vyaAhHQJnDKFSKm9B1fZQoaAZHQGVJonrpqypoB03oA2gIR0CZxkm8ujASdX2UKGgGR0BwpIiwB5ooaAdNHQFoCEdAmcaDSb6P83V9lChoBkdAYdcUBXCCSWgHTegDaAhHQJnGx63RXwN1fZQoaAZHQFFjZVGTcItoB0vVaAhHQJnHOzE74i51fZQoaAZHQG907L+xW1doB0v2aAhHQJnHYSi/O+t1fZQoaAZHQHBM0rK/201oB0vmaAhHQJnHjAnDziF1fZQoaAZHQHBnhTfixV1oB00HAWgIR0CZx7uoxYaHdX2UKGgGR0Bsdg/9pAUtaAdNKgFoCEdAmcijt9hJAnV9lChoBkdAcJXWl/H5rWgHS+1oCEdAmcq8gQpWm3V9lChoBkdAbthUaQ3gk2gHS/loCEdAmcuMiwB5o3V9lChoBkdAcDBuOjqOcWgHTQYBaAhHQJnMIzfrKNh1fZQoaAZHQG0llMRHww1oB0v8aAhHQJnMqb4Ju2t1fZQoaAZHQG4CnrpqynloB0vwaAhHQJnPhgw482d1fZQoaAZHQHBmxT850bNoB00AAWgIR0CZz/6+FlCkdX2UKGgGR0Bv9gqAjIJaaAdNBgFoCEdAmdCQaJhvznV9lChoBkdARPzn/1g6VGgHS9RoCEdAmdKNgnc+JXV9lChoBkdAO2axs2vSt2gHS8JoCEdAmdQtlqagEnV9lChoBkdAcGE7ROUMX2gHS+1oCEdAmdSZAhStNnV9lChoBkdAcK6juKGcnWgHTQ8BaAhHQJnW190A93d1fZQoaAZHQG9+Bje9Ba9oB02NAWgIR0CZ17zjm0VrdX2UKGgGR0BtBO9US7GvaAdL1WgIR0CZ2FhFEy+IdX2UKGgGR0Bx3G1v2oNvaAdN8wFoCEdAmdk3FxXGO3V9lChoBkdAXBI/keZG8WgHTegDaAhHQJnZ1I065oZ1fZQoaAZHQGGpBUzbeuVoB03oA2gIR0CZ2nX3g1m8dX2UKGgGR0BxGUCxNZeSaAdNAgFoCEdAmdqZGOMl1XV9lChoBkdAY3c57w8W9GgHTegDaAhHQJnbqb+cYqJ1fZQoaAZHQGv4DKYAsCloB0vlaAhHQJnb26ClJpZ1fZQoaAZHQG7adAHE/B5oB0v+aAhHQJneYmeDnNh1fZQoaAZHQHFFJtix3V1oB0vSaAhHQJneoFRpDeF1fZQoaAZHQG3ajKoybhFoB0v7aAhHQJng9VjqfOF1fZQoaAZHQGuTP8IiTt9oB0v1aAhHQJniSYqoZQ51fZQoaAZHQG62xRuTA31oB0vvaAhHQJnjUabWmP51fZQoaAZHQHEgpqREF4doB00IAWgIR0CZ47YxL0z1dX2UKGgGR0BwMz4+KTB7aAdNRgNoCEdAmePCW3Sa3XV9lChoBkdAbnlQO4G2TmgHS+poCEdAmeTVZX+2mnV9lChoBkdAbZPTFVDKHWgHS/NoCEdAmeT2PgeijHV9lChoBkdAb7gdupCKJmgHS9VoCEdAmeeuQQtjC3V9lChoBkdAb2q3xWkrPWgHS/9oCEdAmelSwOe8PHV9lChoBkdAcMDNKRMewWgHTQkBaAhHQJntJ2vB7/p1fZQoaAZHQG9MMxGlQ/JoB0vfaAhHQJnt0W0qpcZ1fZQoaAZHQGNTc4HX2/VoB03oA2gIR0CZ7fQL/jsEdX2UKGgGR0BvAviHZbpvaAdL32gIR0CZ7je4TbnHdX2UKGgGR0BhyJA4XGfgaAdN6ANoCEdAme6QWac7Q3V9lChoBkdAbYfkOI68x2gHS+doCEdAme69pmEoOXV9lChoBkdAYr8n889wFWgHTegDaAhHQJnwIHjZL7J1fZQoaAZHQGtTtnPE87poB0vyaAhHQJnw3MEA5rB1fZQoaAZHQG8i7x/d69loB01fAWgIR0CZ8yP0qYqodX2UKGgGR0BtZ/VG0/noaAdL6GgIR0CZ8zEXtShrdX2UKGgGR0BsgoMjNY8uaAdNOQFoCEdAmfQiOR1YAHV9lChoBkdAcDB7Wd3B6GgHS9BoCEdAmfdZDJEH+3V9lChoBkdAbgXJCjUNKGgHS+JoCEdAmfkW+bmU4nV9lChoBkdAcbQvECNjsmgHS+xoCEdAmfoqHoHLR3V9lChoBkdAcA9F72L5ymgHS9hoCEdAmfr+/Dcdo3V9lChoBkdAaxGojv/ipGgHS/9oCEdAmfvRY/3WWnV9lChoBkdAYFVD+irT6WgHTegDaAhHQJn9SL5ylvZ1fZQoaAZHQHBkJqubI91oB0vOaAhHQJn9xNVR1ox1fZQoaAZHQHBJtuUD+zdoB0v9aAhHQJn90EkjX4F1fZQoaAZHQHHDtXPqs2hoB0vNaAhHQJn+jVBlcyF1fZQoaAZHQHEyLzwtrbhoB01DAWgIR0CZ/s1V5rxidX2UKGgGR0Bj0Mu8K5TZaAdN6ANoCEdAmgCbx7RfGHV9lChoBkdAcRYLpA2Q4mgHS9RoCEdAmgJixzJZGXV9lChoBkdAbbbiRW912mgHTXIBaAhHQJoDxA+pwS91fZQoaAZHQGKCbPppvgpoB03oA2gIR0CaBEM85jpcdX2UKGgGR0Btn8IsyzomaAdL6mgIR0CaBJWRigCfdX2UKGgGR0BuhGkWRA8kaAdL8mgIR0CaBojJMg2ZdX2UKGgGR0BtakzhxYJWaAdL52gIR0CaBpUWEbo9dX2UKGgGR0BhSpAt4A0baAdN6ANoCEdAmgaSTt9hJHV9lChoBkdAcnRiSq2jPGgHS/xoCEdAmgdaz/p+t3V9lChoBkdAcGo8PWhAW2gHTREBaAhHQJoJVvsJIDp1fZQoaAZHQGzNb9AHE/BoB02OAWgIR0CaCrT6SDAadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 465, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.005, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 15, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}