hojzas commited on
Commit
6ca84a2
1 Parent(s): cef0a2f

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/all-mpnet-base-v2
9
+ datasets:
10
+ - hojzas/proj9-lab1
11
+ metrics:
12
+ - accuracy
13
+ widget:
14
+ - text: ' try:\n async with aiohttp.ClientSession(headers = fake_headers)
15
+ as session:\n async with session.get(url) as response:\n outcome
16
+ = response.status\n except Exception as e:\n outcome = e.__class__.__name__\n return
17
+ (outcome, url)'
18
+ - text: ' async with aiohttp.ClientSession() as current_session:\n pairs
19
+ = [fetch_url(current_session, url) for url in url_list]\n res_pairs
20
+ = await asyncio.gather(*pairs)\n return res_pairs'
21
+ - text: tasks = [asyncio.create_task(fetch_single_url(url)) for url in urls]\n results
22
+ = asyncio.gather(*tasks)\n return results
23
+ - text: ' coros = [get_url(url) for url in urls]\n results = asyncio.get_event_loop().run_until_complete(asyncio.gather(*coros))\n return
24
+ results'
25
+ - text: ' tasks = [download_url(url) for url in urls]\n results = asyncio.gather(*tasks)\n return
26
+ results'
27
+ pipeline_tag: text-classification
28
+ inference: true
29
+ ---
30
+
31
+ # SetFit with sentence-transformers/all-mpnet-base-v2
32
+
33
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj9-lab1](https://huggingface.co/datasets/hojzas/proj9-lab1) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
34
+
35
+ The model has been trained using an efficient few-shot learning technique that involves:
36
+
37
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
38
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
39
+
40
+ ## Model Details
41
+
42
+ ### Model Description
43
+ - **Model Type:** SetFit
44
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
45
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
46
+ - **Maximum Sequence Length:** 384 tokens
47
+ - **Number of Classes:** 2 classes
48
+ - **Training Dataset:** [hojzas/proj9-lab1](https://huggingface.co/datasets/hojzas/proj9-lab1)
49
+ <!-- - **Language:** Unknown -->
50
+ <!-- - **License:** Unknown -->
51
+
52
+ ### Model Sources
53
+
54
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
55
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
56
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
57
+
58
+ ### Model Labels
59
+ | Label | Examples |
60
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
61
+ | 0 | <ul><li>' async with aiohttp.ClientSession() as session:\\n tasks = [fetch_url(session, url) for url in urls]\\n return await asyncio.gather(*tasks)'</li><li>' tasks = [download_url(url) for url in urls]\\n results = await asyncio.gather(*tasks)\\n return results'</li><li>' async with ClientSession() as client_session:\\n tasks = [asyncio.create_task(fetch_single_url(client_session, url)) for url in urls]\\n results = await asyncio.gather(*tasks)\\n return results'</li></ul> |
62
+ | 1 | <ul><li>' coros = [get_url(url) for url in urls]\\n results = asyncio.get_event_loop().run_until_complete(asyncio.gather(*coros))\\n return results'</li><li>' with aiohttp.ClientSession() as client:\\n tasks = [retrieve_data(client, target) for target in urls]\\n outcomes = asyncio.gather(*tasks)\\n return outcomes'</li><li>'tasks = [asyncio.create_task(fetch_single_url(url)) for url in urls]\\n results = asyncio.gather(*tasks)\\n return results'</li></ul> |
63
+
64
+ ## Uses
65
+
66
+ ### Direct Use for Inference
67
+
68
+ First install the SetFit library:
69
+
70
+ ```bash
71
+ pip install setfit
72
+ ```
73
+
74
+ Then you can load this model and run inference.
75
+
76
+ ```python
77
+ from setfit import SetFitModel
78
+
79
+ # Download from the 🤗 Hub
80
+ model = SetFitModel.from_pretrained("hojzas/proj9")
81
+ # Run inference
82
+ preds = model(" tasks = [download_url(url) for url in urls]\n results = asyncio.gather(*tasks)\n return results")
83
+ ```
84
+
85
+ <!--
86
+ ### Downstream Use
87
+
88
+ *List how someone could finetune this model on their own dataset.*
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Training Set Metrics
112
+ | Training set | Min | Median | Max |
113
+ |:-------------|:----|:--------|:----|
114
+ | Word count | 18 | 37.7333 | 76 |
115
+
116
+ | Label | Training Sample Count |
117
+ |:------|:----------------------|
118
+ | 0 | 8 |
119
+ | 1 | 7 |
120
+
121
+ ### Training Hyperparameters
122
+ - batch_size: (16, 16)
123
+ - num_epochs: (1, 1)
124
+ - max_steps: -1
125
+ - sampling_strategy: oversampling
126
+ - num_iterations: 20
127
+ - body_learning_rate: (2e-05, 2e-05)
128
+ - head_learning_rate: 2e-05
129
+ - loss: CosineSimilarityLoss
130
+ - distance_metric: cosine_distance
131
+ - margin: 0.25
132
+ - end_to_end: False
133
+ - use_amp: False
134
+ - warmup_proportion: 0.1
135
+ - seed: 42
136
+ - eval_max_steps: -1
137
+ - load_best_model_at_end: False
138
+
139
+ ### Training Results
140
+ | Epoch | Step | Training Loss | Validation Loss |
141
+ |:------:|:----:|:-------------:|:---------------:|
142
+ | 0.0263 | 1 | 0.3316 | - |
143
+
144
+ ### Framework Versions
145
+ - Python: 3.10.12
146
+ - SetFit: 1.0.3
147
+ - Sentence Transformers: 2.7.0
148
+ - Transformers: 4.40.2
149
+ - PyTorch: 2.3.0+cu121
150
+ - Datasets: 2.19.1
151
+ - Tokenizers: 0.19.1
152
+
153
+ ## Citation
154
+
155
+ ### BibTeX
156
+ ```bibtex
157
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
158
+ doi = {10.48550/ARXIV.2209.11055},
159
+ url = {https://arxiv.org/abs/2209.11055},
160
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
161
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
162
+ title = {Efficient Few-Shot Learning Without Prompts},
163
+ publisher = {arXiv},
164
+ year = {2022},
165
+ copyright = {Creative Commons Attribution 4.0 International}
166
+ }
167
+ ```
168
+
169
+ <!--
170
+ ## Glossary
171
+
172
+ *Clearly define terms in order to be accessible across audiences.*
173
+ -->
174
+
175
+ <!--
176
+ ## Model Card Authors
177
+
178
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
179
+ -->
180
+
181
+ <!--
182
+ ## Model Card Contact
183
+
184
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
185
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.40.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32f1d763d2f6914e33a52faae9e0277cf12e083a27192dcada9d546b4621aa22
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0580bb134a4c3bb57fbd830c8e1a0f852ac12f846da87245360e565cc86ca6e8
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff