hojzas commited on
Commit
31355fb
1 Parent(s): ee63842

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - hojzas/proj4-all-labs
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: return list(dict.fromkeys(sorted(it)))
14
+ - text: ' perms = all_permutations_substrings(string)\n result = perms & set(words)\n return
15
+ set(i for i in words if i in perms)'
16
+ - text: return [l for i, l in enumerate(it) if i == it.index(l)]
17
+ - text: " unique_items = set(it)\n return sorted(list(unique_items))"
18
+ - text: " seen = set()\n result = []\n for word in it:\n if word not\
19
+ \ in seen:\n result.append(word)\n seen.add(word)\n return\
20
+ \ result"
21
+ pipeline_tag: text-classification
22
+ inference: true
23
+ co2_eq_emissions:
24
+ emissions: 6.0133985248367114
25
+ source: codecarbon
26
+ training_type: fine-tuning
27
+ on_cloud: false
28
+ cpu_model: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
29
+ ram_total_size: 251.49161911010742
30
+ hours_used: 0.019
31
+ hardware_used: 4 x NVIDIA RTX A5000
32
+ base_model: sentence-transformers/all-mpnet-base-v2
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/all-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [hojzas/proj4-all-labs](https://huggingface.co/datasets/hojzas/proj4-all-labs) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 384 tokens
51
+ - **Number of Classes:** 7 classes
52
+ - **Training Dataset:** [hojzas/proj4-all-labs](https://huggingface.co/datasets/hojzas/proj4-all-labs)
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 0 | <ul><li>" perms = all_permutations_substrings(string)\\n return set(''.join(perm) for word in words for perm in perms if word == perm)"</li><li>' perms = all_permutations_substrings(string)\\n out = set()\\n for w in words:\\n for s in perms:\\n if w == s:\\n out.add(w)\\n return out'</li><li>' perms = all_permutations_substrings(string)\\n return set(word for word in words if word in perms)'</li></ul> |
66
+ | 1 | <ul><li>' perms = all_permutations_substrings(string)\\n return perms.intersection(words)'</li><li>' perms = all_permutations_substrings(string)\\n return set.intersection(perms,words)'</li><li>' perms = all_permutations_substrings(string)\\n return set(perms).intersection(words)'</li></ul> |
67
+ | 3 | <ul><li>' it = list(dict.fromkeys(it))\n it.sort()\n return it'</li><li>' sequence = []\n for i in it:\n if i in sequence:\n pass\n else:\n sequence.append(i)\n sequence.sort()\n return sequence'</li><li>' unique = list(set(it))\n unique.sort()\n return unique'</li></ul> |
68
+ | 2 | <ul><li>'return sorted(list({word : it.count(word) for (word) in set(it)}.keys())) '</li><li>'return list(dict.fromkeys(sorted(it)))'</li><li>'return sorted((list(dict.fromkeys(it)))) '</li></ul> |
69
+ | 4 | <ul><li>' unique_items = set(it)\n return sorted(list(unique_items))'</li><li>' letters = set(it)\n sorted_letters = sorted(letters)\n return sorted_letters'</li><li>'return list(sorted(set(it)))'</li></ul> |
70
+ | 5 | <ul><li>' outputSequence = []\n for input in it:\n found = 0\n for output in outputSequence:\n if output == input:\n found = 1\n break\n if not found:\n outputSequence.append(input)\n return outputSequence'</li><li>' uniq = []\n for char in it:\n if not char in uniq:\n uniq.append(char)\n return uniq'</li><li>'return sorted(set(it), key=lambda y: it.index(y)) '</li></ul> |
71
+ | 6 | <ul><li>'return [tmp for tmp in dict.fromkeys(it).keys()]'</li><li>'return [i for i in dict.fromkeys(it)]'</li><li>'return list(dict.fromkeys(it))'</li></ul> |
72
+
73
+ ## Uses
74
+
75
+ ### Direct Use for Inference
76
+
77
+ First install the SetFit library:
78
+
79
+ ```bash
80
+ pip install setfit
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+
85
+ ```python
86
+ from setfit import SetFitModel
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SetFitModel.from_pretrained("hojzas/proj4-all-labs")
90
+ # Run inference
91
+ preds = model("return list(dict.fromkeys(sorted(it)))")
92
+ ```
93
+
94
+ <!--
95
+ ### Downstream Use
96
+
97
+ *List how someone could finetune this model on their own dataset.*
98
+ -->
99
+
100
+ <!--
101
+ ### Out-of-Scope Use
102
+
103
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
104
+ -->
105
+
106
+ <!--
107
+ ## Bias, Risks and Limitations
108
+
109
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
110
+ -->
111
+
112
+ <!--
113
+ ### Recommendations
114
+
115
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
116
+ -->
117
+
118
+ ## Training Details
119
+
120
+ ### Training Set Metrics
121
+ | Training set | Min | Median | Max |
122
+ |:-------------|:----|:--------|:----|
123
+ | Word count | 2 | 25.0515 | 140 |
124
+
125
+ | Label | Training Sample Count |
126
+ |:------|:----------------------|
127
+ | 0 | 35 |
128
+ | 1 | 14 |
129
+ | 2 | 8 |
130
+ | 3 | 10 |
131
+ | 4 | 9 |
132
+ | 5 | 13 |
133
+ | 6 | 8 |
134
+
135
+ ### Training Hyperparameters
136
+ - batch_size: (16, 16)
137
+ - num_epochs: (1, 1)
138
+ - max_steps: -1
139
+ - sampling_strategy: oversampling
140
+ - num_iterations: 20
141
+ - body_learning_rate: (2e-05, 2e-05)
142
+ - head_learning_rate: 2e-05
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: False
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:------:|:----:|:-------------:|:---------------:|
156
+ | 0.0041 | 1 | 0.1745 | - |
157
+ | 0.2058 | 50 | 0.0355 | - |
158
+ | 0.4115 | 100 | 0.0168 | - |
159
+ | 0.6173 | 150 | 0.0042 | - |
160
+ | 0.8230 | 200 | 0.0075 | - |
161
+
162
+ ### Environmental Impact
163
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
164
+ - **Carbon Emitted**: 0.006 kg of CO2
165
+ - **Hours Used**: 0.019 hours
166
+
167
+ ### Training Hardware
168
+ - **On Cloud**: No
169
+ - **GPU Model**: 4 x NVIDIA RTX A5000
170
+ - **CPU Model**: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
171
+ - **RAM Size**: 251.49 GB
172
+
173
+ ### Framework Versions
174
+ - Python: 3.10.12
175
+ - SetFit: 1.0.3
176
+ - Sentence Transformers: 2.2.2
177
+ - Transformers: 4.36.1
178
+ - PyTorch: 2.1.2+cu121
179
+ - Datasets: 2.14.7
180
+ - Tokenizers: 0.15.1
181
+
182
+ ## Citation
183
+
184
+ ### BibTeX
185
+ ```bibtex
186
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
187
+ doi = {10.48550/ARXIV.2209.11055},
188
+ url = {https://arxiv.org/abs/2209.11055},
189
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
190
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
191
+ title = {Efficient Few-Shot Learning Without Prompts},
192
+ publisher = {arXiv},
193
+ year = {2022},
194
+ copyright = {Creative Commons Attribution 4.0 International}
195
+ }
196
+ ```
197
+
198
+ <!--
199
+ ## Glossary
200
+
201
+ *Clearly define terms in order to be accessible across audiences.*
202
+ -->
203
+
204
+ <!--
205
+ ## Model Card Authors
206
+
207
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
208
+ -->
209
+
210
+ <!--
211
+ ## Model Card Contact
212
+
213
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
214
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/xkrejc70/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fbc5e81dc7aa5f5c5118042f45b7b4a583464c6995599de11e20090a105e6cb
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eba94ba659fa7768decdfbf5cea37f70ecfcffe07c4150ca3b74cd8394ed2213
3
+ size 43967
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff