hoangbinhmta99
commited on
Commit
·
f3c6047
1
Parent(s):
a9938a9
Update README.md
Browse files
README.md
CHANGED
@@ -9,16 +9,10 @@ pipeline_tag: automatic-speech-recognition
|
|
9 |
tags:
|
10 |
- audio
|
11 |
- speech
|
12 |
-
- speechbrain
|
13 |
- Transformer
|
14 |
license: cc-by-nc-4.0
|
15 |
-
widget:
|
16 |
-
- example_title: Example 1
|
17 |
-
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example.mp3
|
18 |
-
- example_title: Example 2
|
19 |
-
src: https://huggingface.co/dragonSwing/wav2vec2-base-vn-270h/raw/main/example2.mp3
|
20 |
model-index:
|
21 |
-
- name: Wav2vec2
|
22 |
results:
|
23 |
- task:
|
24 |
name: Speech Recognition
|
@@ -30,127 +24,39 @@ model-index:
|
|
30 |
metrics:
|
31 |
- name: Test WER
|
32 |
type: wer
|
33 |
-
value:
|
34 |
-
- task:
|
35 |
-
name: Speech Recognition
|
36 |
-
type: automatic-speech-recognition
|
37 |
-
dataset:
|
38 |
-
name: Common Voice 7.0
|
39 |
-
type: mozilla-foundation/common_voice_7_0
|
40 |
-
args: vi
|
41 |
-
metrics:
|
42 |
-
- name: Test WER
|
43 |
-
type: wer
|
44 |
-
value: 5.57
|
45 |
-
- task:
|
46 |
-
name: Speech Recognition
|
47 |
-
type: automatic-speech-recognition
|
48 |
-
dataset:
|
49 |
-
name: Common Voice 8.0
|
50 |
-
type: mozilla-foundation/common_voice_8_0
|
51 |
-
args: vi
|
52 |
-
metrics:
|
53 |
-
- name: Test WER
|
54 |
-
type: wer
|
55 |
-
value: 5.76
|
56 |
-
- task:
|
57 |
-
name: Speech Recognition
|
58 |
-
type: automatic-speech-recognition
|
59 |
-
dataset:
|
60 |
-
name: VIVOS
|
61 |
-
type: vivos
|
62 |
-
args: vi
|
63 |
-
metrics:
|
64 |
-
- name: Test WER
|
65 |
-
type: wer
|
66 |
-
value: 3.70
|
67 |
---
|
68 |
-
# Wav2Vec2-Base-Vietnamese-270h
|
69 |
-
Fine-tuned Wav2Vec2 model on Vietnamese Speech Recognition task using about 270h labelled data combined from multiple datasets including [Common Voice](https://huggingface.co/datasets/common_voice), [VIVOS](https://huggingface.co/datasets/vivos), [VLSP2020](https://vlsp.org.vn/vlsp2020/eval/asr). The model was fine-tuned using SpeechBrain toolkit with a custom tokenizer. For a better experience, we encourage you to learn more about [SpeechBrain](https://speechbrain.github.io/).
|
70 |
-
When using this model, make sure that your speech input is sampled at 16kHz.
|
71 |
-
Please refer to [huggingface blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) or [speechbrain](https://github.com/speechbrain/speechbrain/tree/develop/recipes/CommonVoice/ASR/CTC) on how to fine-tune Wav2Vec2 model on a specific language.
|
72 |
-
|
73 |
-
### Benchmark WER result:
|
74 |
-
| | [VIVOS](https://huggingface.co/datasets/vivos) | [COMMON VOICE 7.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_7_0) | [COMMON VOICE 8.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0) |
|
75 |
-
|---|---|---|---|
|
76 |
-
|without LM| 8.23 | 12.15 | 12.15 |
|
77 |
-
|with 4-grams LM| 3.70 | 5.57 | 5.76 |
|
78 |
-
|
79 |
-
The language model was trained using [OSCAR](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109) dataset on about 32GB of crawled text.
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
### Evaluation
|
98 |
-
The model can be evaluated as follows on the Vietnamese test data of Common Voice 8.0.
|
99 |
-
```python
|
100 |
-
import torch
|
101 |
-
import torchaudio
|
102 |
-
from datasets import load_dataset, load_metric, Audio
|
103 |
-
from transformers import Wav2Vec2FeatureExtractor
|
104 |
-
from speechbrain.pretrained import EncoderASR
|
105 |
-
import re
|
106 |
-
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "vi", split="test", use_auth_token=True)
|
107 |
-
test_dataset = test_dataset.cast_column("audio", Audio(sampling_rate=16_000))
|
108 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
109 |
-
wer = load_metric("wer")
|
110 |
-
extractor = Wav2Vec2FeatureExtractor.from_pretrained("dragonSwing/wav2vec2-base-vn-270h")
|
111 |
-
model = EncoderASR.from_hparams(source="dragonSwing/wav2vec2-base-vn-270h", savedir="pretrained_models/asr-wav2vec2-vi", run_opts={'device': device})
|
112 |
-
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
|
113 |
-
# Preprocessing the datasets.
|
114 |
-
# We need to read the audio files as arrays
|
115 |
-
def speech_file_to_array_fn(batch):
|
116 |
-
audio = batch["audio"]
|
117 |
-
batch["target_text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
118 |
-
batch['speech'] = audio['array']
|
119 |
-
return batch
|
120 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
121 |
-
|
122 |
-
def evaluate(batch):
|
123 |
-
# For padding inputs only
|
124 |
-
inputs = extractor(
|
125 |
-
batch['speech'],
|
126 |
-
sampling_rate=16000,
|
127 |
-
return_tensors="pt",
|
128 |
-
padding=True,
|
129 |
-
do_normalize=False
|
130 |
-
).input_values
|
131 |
-
input_lens = torch.ones(inputs.shape[0])
|
132 |
-
pred_str, pred_tokens = model.transcribe_batch(inputs, input_lens)
|
133 |
-
batch["pred_strings"] = pred_str
|
134 |
-
|
135 |
-
return batch
|
136 |
-
result = test_dataset.map(evaluate, batched=True, batch_size=1)
|
137 |
-
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["target_text"])))
|
138 |
```
|
139 |
-
|
140 |
-
|
141 |
-
#### Citation
|
142 |
```
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
```
|
152 |
-
|
153 |
-
#### About SpeechBrain
|
154 |
-
SpeechBrain is an open-source and all-in-one speech toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains.
|
155 |
-
Website: [https://speechbrain.github.io](https://speechbrain.github.io/)
|
156 |
-
GitHub: [https://github.com/speechbrain/speechbrain](https://github.com/speechbrain/speechbrain)
|
|
|
9 |
tags:
|
10 |
- audio
|
11 |
- speech
|
|
|
12 |
- Transformer
|
13 |
license: cc-by-nc-4.0
|
|
|
|
|
|
|
|
|
|
|
14 |
model-index:
|
15 |
+
- name: Wav2vec2 NCKH Vietnamese 2022
|
16 |
results:
|
17 |
- task:
|
18 |
name: Speech Recognition
|
|
|
24 |
metrics:
|
25 |
- name: Test WER
|
26 |
type: wer
|
27 |
+
value: No
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
Convert from model .pt to transformer
|
31 |
+
Link: https://huggingface.co/tommy19970714/wav2vec2-base-960h
|
32 |
+
Bash:
|
33 |
+
```bash
|
34 |
+
pip install transformers[sentencepiece]
|
35 |
+
pip install fairseq -U
|
36 |
+
git clone https://github.com/huggingface/transformers.git
|
37 |
+
cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py .
|
38 |
+
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small.pt -O ./wav2vec_small.pt
|
39 |
+
mkdir dict
|
40 |
+
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
|
41 |
+
mkdir outputs
|
42 |
+
python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py
|
43 |
+
--pytorch_dump_folder_path ./outputs --checkpoint_path ./finetuned/wav2vec_small.pt
|
44 |
+
--dict_path ./dict/dict.ltr.txt --not_finetuned
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
```
|
46 |
+
# install and upload model
|
|
|
|
|
47 |
```
|
48 |
+
curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
|
49 |
+
git lfs install
|
50 |
+
sudo apt-get install git-lfs
|
51 |
+
git lfs install
|
52 |
+
git clone https://huggingface.co/hoangbinhmta99/wav2vec-demo
|
53 |
+
ls
|
54 |
+
cd wav2vec-demo/
|
55 |
+
git status
|
56 |
+
git add .
|
57 |
+
git commit -m "First model version"
|
58 |
+
git config --global user.email [yourname]
|
59 |
+
git config --global user.name [yourpass]
|
60 |
+
git commit -m "First model version"
|
61 |
+
git push
|
62 |
```
|
|
|
|
|
|
|
|
|
|