hmart824 commited on
Commit
100456c
·
verified ·
1 Parent(s): dfadc7d

layoutlmv3-model-ubiai-finetuned

Browse files
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: cc-by-nc-sa-4.0
4
+ base_model: microsoft/layoutlmv3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: layoutlmv3-finetuned-ubiai-dataset-invoice-3
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # layoutlmv3-finetuned-ubiai-dataset-invoice-3
16
+
17
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0901
20
+ - B-b-address: {'precision': 1.0, 'recall': 0.8461538461538461, 'f1': 0.9166666666666666, 'number': 13}
21
+ - B-b-name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
22
+ - B-order date: {'precision': 1.0, 'recall': 0.14285714285714285, 'f1': 0.25, 'number': 7}
23
+ - B-s-address: {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14}
24
+ - B-s-name: {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10}
25
+ - B-total gross: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3}
26
+ - E-b-address: {'precision': 0.8333333333333334, 'recall': 0.7692307692307693, 'f1': 0.8, 'number': 13}
27
+ - E-b-name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
28
+ - E-order date: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7}
29
+ - E-s-address: {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14}
30
+ - E-s-name: {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10}
31
+ - E-total gross: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
32
+ - I-b-address: {'precision': 0.9664429530201343, 'recall': 1.0, 'f1': 0.9829351535836178, 'number': 144}
33
+ - I-b-name: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10}
34
+ - I-order date: {'precision': 0.5263157894736842, 'recall': 1.0, 'f1': 0.6896551724137931, 'number': 10}
35
+ - I-s-address: {'precision': 0.9807692307692307, 'recall': 1.0, 'f1': 0.9902912621359222, 'number': 204}
36
+ - I-s-name: {'precision': 0.9696969696969697, 'recall': 1.0, 'f1': 0.9846153846153847, 'number': 32}
37
+ - S-b-address: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
38
+ - S-gst no: {'precision': 0.6923076923076923, 'recall': 1.0, 'f1': 0.8181818181818181, 'number': 9}
39
+ - S-invoice no: {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10}
40
+ - S-order date: {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3}
41
+ - S-order no: {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10}
42
+ - S-s-address: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1}
43
+ - S-total gross: {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 9}
44
+ - Overall Precision: 0.9386
45
+ - Overall Recall: 0.9369
46
+ - Overall F1: 0.9378
47
+ - Overall Accuracy: 0.9851
48
+
49
+ ## Model description
50
+
51
+ More information needed
52
+
53
+ ## Intended uses & limitations
54
+
55
+ More information needed
56
+
57
+ ## Training and evaluation data
58
+
59
+ More information needed
60
+
61
+ ## Training procedure
62
+
63
+ ### Training hyperparameters
64
+
65
+ The following hyperparameters were used during training:
66
+ - learning_rate: 5e-05
67
+ - train_batch_size: 8
68
+ - eval_batch_size: 8
69
+ - seed: 42
70
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
71
+ - lr_scheduler_type: linear
72
+ - num_epochs: 15
73
+
74
+ ### Training results
75
+
76
+ | Training Loss | Epoch | Step | Validation Loss | B-b-address | B-b-name | B-order date | B-s-address | B-s-name | B-total gross | E-b-address | E-b-name | E-order date | E-s-address | E-s-name | E-total gross | I-b-address | I-b-name | I-order date | I-s-address | I-s-name | S-b-address | S-gst no | S-invoice no | S-order date | S-order no | S-s-address | S-total gross | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
77
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:|:---------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
78
+ | 1.7253 | 1.0 | 12 | 1.0196 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 204} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.0 | 0.0 | 0.0 | 0.7697 |
79
+ | 0.8858 | 2.0 | 24 | 0.7540 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.4326241134751773, 'recall': 0.8970588235294118, 'f1': 0.583732057416268, 'number': 204} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.4326 | 0.3297 | 0.3742 | 0.8170 |
80
+ | 0.6423 | 3.0 | 36 | 0.5378 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6684210526315789, 'recall': 0.8819444444444444, 'f1': 0.7604790419161677, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.6690647482014388, 'recall': 0.9117647058823529, 'f1': 0.7717842323651452, 'number': 204} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.6688 | 0.5640 | 0.6119 | 0.8967 |
81
+ | 0.4856 | 4.0 | 48 | 0.4719 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7062146892655368, 'recall': 0.8680555555555556, 'f1': 0.7788161993769471, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.6494845360824743, 'recall': 0.9264705882352942, 'f1': 0.7636363636363637, 'number': 204} | {'precision': 0.16666666666666666, 'recall': 0.25, 'f1': 0.2, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.6240 | 0.5802 | 0.6013 | 0.8992 |
82
+ | 0.3184 | 5.0 | 60 | 0.3890 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7071823204419889, 'recall': 0.8888888888888888, 'f1': 0.7876923076923077, 'number': 144} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.8281938325991189, 'recall': 0.9215686274509803, 'f1': 0.8723897911832945, 'number': 204} | {'precision': 0.25, 'recall': 0.75, 'f1': 0.375, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.6746 | 0.6126 | 0.6421 | 0.9108 |
83
+ | 0.2886 | 6.0 | 72 | 0.3365 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 1.0, 'recall': 0.1, 'f1': 0.18181818181818182, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6666666666666666, 'recall': 0.14285714285714285, 'f1': 0.23529411764705882, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7384615384615385, 'recall': 1.0, 'f1': 0.8495575221238938, 'number': 144} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.8355555555555556, 'recall': 0.9215686274509803, 'f1': 0.8764568764568765, 'number': 204} | {'precision': 0.22988505747126436, 'recall': 0.625, 'f1': 0.33613445378151263, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.625, 'recall': 0.5555555555555556, 'f1': 0.5882352941176471, 'number': 9} | {'precision': 0.5, 'recall': 0.3, 'f1': 0.37499999999999994, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.1, 'f1': 0.18181818181818182, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.6932 | 0.6595 | 0.6759 | 0.9203 |
84
+ | 0.2639 | 7.0 | 84 | 0.2723 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.7857142857142857, 'recall': 0.7857142857142857, 'f1': 0.7857142857142857, 'number': 14} | {'precision': 1.0, 'recall': 0.3, 'f1': 0.4615384615384615, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.7647058823529411, 'recall': 0.9930555555555556, 'f1': 0.8640483383685801, 'number': 144} | {'precision': 0.6, 'recall': 0.3, 'f1': 0.4, 'number': 10} | {'precision': 1.0, 'recall': 0.2, 'f1': 0.33333333333333337, 'number': 10} | {'precision': 0.9356435643564357, 'recall': 0.9264705882352942, 'f1': 0.9310344827586207, 'number': 204} | {'precision': 0.5166666666666667, 'recall': 0.96875, 'f1': 0.673913043478261, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.8, 'recall': 0.8888888888888888, 'f1': 0.8421052631578948, 'number': 9} | {'precision': 0.4, 'recall': 0.8, 'f1': 0.5333333333333333, 'number': 10} | {'precision': 1.0, 'recall': 0.3333333333333333, 'f1': 0.5, 'number': 3} | {'precision': 1.0, 'recall': 0.1, 'f1': 0.18181818181818182, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 9} | 0.7957 | 0.7369 | 0.7652 | 0.9386 |
85
+ | 0.2236 | 8.0 | 96 | 0.2266 | {'precision': 1.0, 'recall': 0.07692307692307693, 'f1': 0.14285714285714288, 'number': 13} | {'precision': 0.7777777777777778, 'recall': 0.7, 'f1': 0.7368421052631577, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.8181818181818182, 'recall': 0.6428571428571429, 'f1': 0.7200000000000001, 'number': 14} | {'precision': 1.0, 'recall': 0.4, 'f1': 0.5714285714285715, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 13} | {'precision': 0.75, 'recall': 0.3, 'f1': 0.4285714285714285, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 1.0, 'recall': 0.07142857142857142, 'f1': 0.13333333333333333, 'number': 14} | {'precision': 0.5, 'recall': 0.1, 'f1': 0.16666666666666669, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 144} | {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 10} | {'precision': 0.9043062200956937, 'recall': 0.9264705882352942, 'f1': 0.9152542372881356, 'number': 204} | {'precision': 0.6086956521739131, 'recall': 0.875, 'f1': 0.717948717948718, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 9} | {'precision': 0.45, 'recall': 0.9, 'f1': 0.6, 'number': 10} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 3} | {'precision': 0.5714285714285714, 'recall': 0.4, 'f1': 0.47058823529411764, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.8, 'recall': 0.4444444444444444, 'f1': 0.5714285714285714, 'number': 9} | 0.7923 | 0.7766 | 0.7843 | 0.9481 |
86
+ | 0.194 | 9.0 | 108 | 0.1814 | {'precision': 1.0, 'recall': 0.15384615384615385, 'f1': 0.2666666666666667, 'number': 13} | {'precision': 0.7142857142857143, 'recall': 1.0, 'f1': 0.8333333333333333, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.8461538461538461, 'recall': 0.7857142857142857, 'f1': 0.8148148148148148, 'number': 14} | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 1.0, 'recall': 0.23076923076923078, 'f1': 0.375, 'number': 13} | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.6470588235294118, 'recall': 0.7857142857142857, 'f1': 0.7096774193548386, 'number': 14} | {'precision': 1.0, 'recall': 0.7, 'f1': 0.8235294117647058, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.8780487804878049, 'recall': 1.0, 'f1': 0.9350649350649352, 'number': 144} | {'precision': 0.7692307692307693, 'recall': 1.0, 'f1': 0.8695652173913044, 'number': 10} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 10} | {'precision': 0.9838709677419355, 'recall': 0.8970588235294118, 'f1': 0.9384615384615386, 'number': 204} | {'precision': 0.8857142857142857, 'recall': 0.96875, 'f1': 0.9253731343283582, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5294117647058824, 'recall': 1.0, 'f1': 0.6923076923076924, 'number': 9} | {'precision': 0.6666666666666666, 'recall': 0.8, 'f1': 0.7272727272727272, 'number': 10} | {'precision': 1.0, 'recall': 0.6666666666666666, 'f1': 0.8, 'number': 3} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.625, 'recall': 0.5555555555555556, 'f1': 0.5882352941176471, 'number': 9} | 0.8804 | 0.8486 | 0.8642 | 0.9651 |
87
+ | 0.1412 | 10.0 | 120 | 0.1529 | {'precision': 1.0, 'recall': 0.46153846153846156, 'f1': 0.631578947368421, 'number': 13} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9166666666666666, 'recall': 0.7857142857142857, 'f1': 0.8461538461538461, 'number': 14} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.8888888888888888, 'recall': 0.6153846153846154, 'f1': 0.7272727272727274, 'number': 13} | {'precision': 1.0, 'recall': 0.8, 'f1': 0.888888888888889, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9090909090909091, 'recall': 0.7142857142857143, 'f1': 0.8, 'number': 14} | {'precision': 0.875, 'recall': 0.7, 'f1': 0.7777777777777777, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.9290322580645162, 'recall': 1.0, 'f1': 0.963210702341137, 'number': 144} | {'precision': 0.8333333333333334, 'recall': 1.0, 'f1': 0.9090909090909091, 'number': 10} | {'precision': 0.6666666666666666, 'recall': 1.0, 'f1': 0.8, 'number': 10} | {'precision': 0.9742268041237113, 'recall': 0.9264705882352942, 'f1': 0.949748743718593, 'number': 204} | {'precision': 0.8888888888888888, 'recall': 1.0, 'f1': 0.9411764705882353, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5625, 'recall': 1.0, 'f1': 0.72, 'number': 9} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.6666666666666666, 'recall': 0.6666666666666666, 'f1': 0.6666666666666666, 'number': 3} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.5454545454545454, 'recall': 0.6666666666666666, 'f1': 0.6, 'number': 9} | 0.9086 | 0.8775 | 0.8928 | 0.9718 |
88
+ | 0.1239 | 11.0 | 132 | 0.1275 | {'precision': 1.0, 'recall': 0.6153846153846154, 'f1': 0.761904761904762, 'number': 13} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 1.0, 'recall': 0.14285714285714285, 'f1': 0.25, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9090909090909091, 'recall': 0.7142857142857143, 'f1': 0.8, 'number': 14} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 144} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5882352941176471, 'recall': 1.0, 'f1': 0.7407407407407407, 'number': 10} | {'precision': 0.9754901960784313, 'recall': 0.9754901960784313, 'f1': 0.9754901960784313, 'number': 204} | {'precision': 0.9696969696969697, 'recall': 1.0, 'f1': 0.9846153846153847, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6428571428571429, 'recall': 1.0, 'f1': 0.782608695652174, 'number': 9} | {'precision': 0.75, 'recall': 0.9, 'f1': 0.8181818181818182, 'number': 10} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 9} | 0.9287 | 0.9153 | 0.9220 | 0.9805 |
89
+ | 0.1098 | 12.0 | 144 | 0.1056 | {'precision': 1.0, 'recall': 0.8461538461538461, 'f1': 0.9166666666666666, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9090909090909091, 'recall': 0.7142857142857143, 'f1': 0.8, 'number': 14} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.96, 'recall': 1.0, 'f1': 0.9795918367346939, 'number': 144} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5263157894736842, 'recall': 1.0, 'f1': 0.6896551724137931, 'number': 10} | {'precision': 0.9760765550239234, 'recall': 1.0, 'f1': 0.9878934624697336, 'number': 204} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6428571428571429, 'recall': 1.0, 'f1': 0.782608695652174, 'number': 9} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6, 'recall': 0.6666666666666666, 'f1': 0.631578947368421, 'number': 9} | 0.9330 | 0.9279 | 0.9304 | 0.9834 |
90
+ | 0.1024 | 13.0 | 156 | 0.0963 | {'precision': 1.0, 'recall': 0.7692307692307693, 'f1': 0.8695652173913044, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.14285714285714285, 'f1': 0.25, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9, 'recall': 0.6923076923076923, 'f1': 0.7826086956521738, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9166666666666666, 'recall': 0.7857142857142857, 'f1': 0.8461538461538461, 'number': 14} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.9536423841059603, 'recall': 1.0, 'f1': 0.976271186440678, 'number': 144} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5263157894736842, 'recall': 1.0, 'f1': 0.6896551724137931, 'number': 10} | {'precision': 0.9807692307692307, 'recall': 1.0, 'f1': 0.9902912621359222, 'number': 204} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 9} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6666666666666666, 'recall': 0.8888888888888888, 'f1': 0.761904761904762, 'number': 9} | 0.9350 | 0.9333 | 0.9342 | 0.9846 |
91
+ | 0.0921 | 14.0 | 168 | 0.0926 | {'precision': 1.0, 'recall': 0.8461538461538461, 'f1': 0.9166666666666666, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.14285714285714285, 'f1': 0.25, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.9090909090909091, 'recall': 0.7692307692307693, 'f1': 0.8333333333333333, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 0.9166666666666666, 'recall': 0.7857142857142857, 'f1': 0.8461538461538461, 'number': 14} | {'precision': 0.8888888888888888, 'recall': 0.8, 'f1': 0.8421052631578948, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.9664429530201343, 'recall': 1.0, 'f1': 0.9829351535836178, 'number': 144} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5263157894736842, 'recall': 1.0, 'f1': 0.6896551724137931, 'number': 10} | {'precision': 0.9807692307692307, 'recall': 1.0, 'f1': 0.9902912621359222, 'number': 204} | {'precision': 0.9411764705882353, 'recall': 1.0, 'f1': 0.9696969696969697, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 9} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 9} | 0.9385 | 0.9351 | 0.9368 | 0.9851 |
92
+ | 0.1018 | 15.0 | 180 | 0.0901 | {'precision': 1.0, 'recall': 0.8461538461538461, 'f1': 0.9166666666666666, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 1.0, 'recall': 0.14285714285714285, 'f1': 0.25, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 0.9090909090909091, 'recall': 1.0, 'f1': 0.9523809523809523, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.8333333333333334, 'recall': 0.7692307692307693, 'f1': 0.8, 'number': 13} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 7} | {'precision': 1.0, 'recall': 0.7857142857142857, 'f1': 0.88, 'number': 14} | {'precision': 0.9, 'recall': 0.9, 'f1': 0.9, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.9664429530201343, 'recall': 1.0, 'f1': 0.9829351535836178, 'number': 144} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 10} | {'precision': 0.5263157894736842, 'recall': 1.0, 'f1': 0.6896551724137931, 'number': 10} | {'precision': 0.9807692307692307, 'recall': 1.0, 'f1': 0.9902912621359222, 'number': 204} | {'precision': 0.9696969696969697, 'recall': 1.0, 'f1': 0.9846153846153847, 'number': 32} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6923076923076923, 'recall': 1.0, 'f1': 0.8181818181818181, 'number': 9} | {'precision': 0.8181818181818182, 'recall': 0.9, 'f1': 0.8571428571428572, 'number': 10} | {'precision': 0.75, 'recall': 1.0, 'f1': 0.8571428571428571, 'number': 3} | {'precision': 1.0, 'recall': 0.9, 'f1': 0.9473684210526316, 'number': 10} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 1} | {'precision': 0.6363636363636364, 'recall': 0.7777777777777778, 'f1': 0.7000000000000001, 'number': 9} | 0.9386 | 0.9369 | 0.9378 | 0.9851 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.44.2
98
+ - Pytorch 2.4.1+cu121
99
+ - Datasets 3.0.1
100
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/layoutlmv3-base",
3
+ "architectures": [
4
+ "LayoutLMv3ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "coordinate_size": 128,
10
+ "eos_token_id": 2,
11
+ "has_relative_attention_bias": true,
12
+ "has_spatial_attention_bias": true,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.1,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "B-B-ADDRESS",
18
+ "1": "B-B-NAME",
19
+ "2": "B-INVOICE NO",
20
+ "3": "B-ORDER DATE",
21
+ "4": "B-S-ADDRESS",
22
+ "5": "B-S-NAME",
23
+ "6": "B-TOTAL GROSS",
24
+ "7": "E-B-ADDRESS",
25
+ "8": "E-B-NAME",
26
+ "9": "E-INVOICE NO",
27
+ "10": "E-ORDER DATE",
28
+ "11": "E-S-ADDRESS",
29
+ "12": "E-S-NAME",
30
+ "13": "E-TOTAL GROSS",
31
+ "14": "I-B-ADDRESS",
32
+ "15": "I-B-NAME",
33
+ "16": "I-INVOICE NO",
34
+ "17": "I-ORDER DATE",
35
+ "18": "I-S-ADDRESS",
36
+ "19": "I-S-NAME",
37
+ "20": "O",
38
+ "21": "S-B-ADDRESS",
39
+ "22": "S-B-NAME",
40
+ "23": "S-GST NO",
41
+ "24": "S-INVOICE NO",
42
+ "25": "S-ORDER DATE",
43
+ "26": "S-ORDER NO",
44
+ "27": "S-S-ADDRESS",
45
+ "28": "S-TOTAL GROSS"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "input_size": 224,
49
+ "intermediate_size": 3072,
50
+ "label2id": {
51
+ "B-B-ADDRESS": 0,
52
+ "B-B-NAME": 1,
53
+ "B-INVOICE NO": 2,
54
+ "B-ORDER DATE": 3,
55
+ "B-S-ADDRESS": 4,
56
+ "B-S-NAME": 5,
57
+ "B-TOTAL GROSS": 6,
58
+ "E-B-ADDRESS": 7,
59
+ "E-B-NAME": 8,
60
+ "E-INVOICE NO": 9,
61
+ "E-ORDER DATE": 10,
62
+ "E-S-ADDRESS": 11,
63
+ "E-S-NAME": 12,
64
+ "E-TOTAL GROSS": 13,
65
+ "I-B-ADDRESS": 14,
66
+ "I-B-NAME": 15,
67
+ "I-INVOICE NO": 16,
68
+ "I-ORDER DATE": 17,
69
+ "I-S-ADDRESS": 18,
70
+ "I-S-NAME": 19,
71
+ "O": 20,
72
+ "S-B-ADDRESS": 21,
73
+ "S-B-NAME": 22,
74
+ "S-GST NO": 23,
75
+ "S-INVOICE NO": 24,
76
+ "S-ORDER DATE": 25,
77
+ "S-ORDER NO": 26,
78
+ "S-S-ADDRESS": 27,
79
+ "S-TOTAL GROSS": 28
80
+ },
81
+ "layer_norm_eps": 1e-05,
82
+ "max_2d_position_embeddings": 1024,
83
+ "max_position_embeddings": 514,
84
+ "max_rel_2d_pos": 256,
85
+ "max_rel_pos": 128,
86
+ "model_type": "layoutlmv3",
87
+ "num_attention_heads": 12,
88
+ "num_channels": 3,
89
+ "num_hidden_layers": 12,
90
+ "pad_token_id": 1,
91
+ "patch_size": 16,
92
+ "rel_2d_pos_bins": 64,
93
+ "rel_pos_bins": 32,
94
+ "second_input_size": 112,
95
+ "shape_size": 128,
96
+ "text_embed": true,
97
+ "torch_dtype": "float32",
98
+ "transformers_version": "4.44.2",
99
+ "type_vocab_size": 1,
100
+ "visual_embed": true,
101
+ "vocab_size": 50265
102
+ }
eval_split/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c66668792a244255ffff90367a5e59f70d7e1a3b2f7c9a2ff14792f9a5c283d4
3
+ size 6358320
eval_split/dataset_info.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "pixel_values": {
6
+ "shape": [
7
+ 3,
8
+ 224,
9
+ 224
10
+ ],
11
+ "dtype": "float32",
12
+ "_type": "Array3D"
13
+ },
14
+ "input_ids": {
15
+ "feature": {
16
+ "dtype": "int64",
17
+ "_type": "Value"
18
+ },
19
+ "_type": "Sequence"
20
+ },
21
+ "attention_mask": {
22
+ "feature": {
23
+ "dtype": "int64",
24
+ "_type": "Value"
25
+ },
26
+ "_type": "Sequence"
27
+ },
28
+ "bbox": {
29
+ "shape": [
30
+ 512,
31
+ 4
32
+ ],
33
+ "dtype": "int64",
34
+ "_type": "Array2D"
35
+ },
36
+ "labels": {
37
+ "feature": {
38
+ "names": [
39
+ "B-B-ADDRESS",
40
+ "B-B-NAME",
41
+ "B-INVOICE NO",
42
+ "B-ORDER DATE",
43
+ "B-S-ADDRESS",
44
+ "B-S-NAME",
45
+ "B-TOTAL GROSS",
46
+ "E-B-ADDRESS",
47
+ "E-B-NAME",
48
+ "E-INVOICE NO",
49
+ "E-ORDER DATE",
50
+ "E-S-ADDRESS",
51
+ "E-S-NAME",
52
+ "E-TOTAL GROSS",
53
+ "I-B-ADDRESS",
54
+ "I-B-NAME",
55
+ "I-INVOICE NO",
56
+ "I-ORDER DATE",
57
+ "I-S-ADDRESS",
58
+ "I-S-NAME",
59
+ "O",
60
+ "S-B-ADDRESS",
61
+ "S-B-NAME",
62
+ "S-GST NO",
63
+ "S-INVOICE NO",
64
+ "S-ORDER DATE",
65
+ "S-ORDER NO",
66
+ "S-S-ADDRESS",
67
+ "S-TOTAL GROSS"
68
+ ],
69
+ "_type": "ClassLabel"
70
+ },
71
+ "_type": "Sequence"
72
+ }
73
+ },
74
+ "homepage": "",
75
+ "license": ""
76
+ }
eval_split/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "3b97732802d99000",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": "torch",
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
final_model/config.json ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/layoutlmv3-base",
3
+ "architectures": [
4
+ "LayoutLMv3ForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "coordinate_size": 128,
10
+ "eos_token_id": 2,
11
+ "has_relative_attention_bias": true,
12
+ "has_spatial_attention_bias": true,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.1,
15
+ "hidden_size": 768,
16
+ "id2label": {
17
+ "0": "B-B-ADDRESS",
18
+ "1": "B-B-NAME",
19
+ "2": "B-INVOICE NO",
20
+ "3": "B-ORDER DATE",
21
+ "4": "B-S-ADDRESS",
22
+ "5": "B-S-NAME",
23
+ "6": "B-TOTAL GROSS",
24
+ "7": "E-B-ADDRESS",
25
+ "8": "E-B-NAME",
26
+ "9": "E-INVOICE NO",
27
+ "10": "E-ORDER DATE",
28
+ "11": "E-S-ADDRESS",
29
+ "12": "E-S-NAME",
30
+ "13": "E-TOTAL GROSS",
31
+ "14": "I-B-ADDRESS",
32
+ "15": "I-B-NAME",
33
+ "16": "I-INVOICE NO",
34
+ "17": "I-ORDER DATE",
35
+ "18": "I-S-ADDRESS",
36
+ "19": "I-S-NAME",
37
+ "20": "O",
38
+ "21": "S-B-ADDRESS",
39
+ "22": "S-B-NAME",
40
+ "23": "S-GST NO",
41
+ "24": "S-INVOICE NO",
42
+ "25": "S-ORDER DATE",
43
+ "26": "S-ORDER NO",
44
+ "27": "S-S-ADDRESS",
45
+ "28": "S-TOTAL GROSS"
46
+ },
47
+ "initializer_range": 0.02,
48
+ "input_size": 224,
49
+ "intermediate_size": 3072,
50
+ "label2id": {
51
+ "B-B-ADDRESS": 0,
52
+ "B-B-NAME": 1,
53
+ "B-INVOICE NO": 2,
54
+ "B-ORDER DATE": 3,
55
+ "B-S-ADDRESS": 4,
56
+ "B-S-NAME": 5,
57
+ "B-TOTAL GROSS": 6,
58
+ "E-B-ADDRESS": 7,
59
+ "E-B-NAME": 8,
60
+ "E-INVOICE NO": 9,
61
+ "E-ORDER DATE": 10,
62
+ "E-S-ADDRESS": 11,
63
+ "E-S-NAME": 12,
64
+ "E-TOTAL GROSS": 13,
65
+ "I-B-ADDRESS": 14,
66
+ "I-B-NAME": 15,
67
+ "I-INVOICE NO": 16,
68
+ "I-ORDER DATE": 17,
69
+ "I-S-ADDRESS": 18,
70
+ "I-S-NAME": 19,
71
+ "O": 20,
72
+ "S-B-ADDRESS": 21,
73
+ "S-B-NAME": 22,
74
+ "S-GST NO": 23,
75
+ "S-INVOICE NO": 24,
76
+ "S-ORDER DATE": 25,
77
+ "S-ORDER NO": 26,
78
+ "S-S-ADDRESS": 27,
79
+ "S-TOTAL GROSS": 28
80
+ },
81
+ "layer_norm_eps": 1e-05,
82
+ "max_2d_position_embeddings": 1024,
83
+ "max_position_embeddings": 514,
84
+ "max_rel_2d_pos": 256,
85
+ "max_rel_pos": 128,
86
+ "model_type": "layoutlmv3",
87
+ "num_attention_heads": 12,
88
+ "num_channels": 3,
89
+ "num_hidden_layers": 12,
90
+ "pad_token_id": 1,
91
+ "patch_size": 16,
92
+ "rel_2d_pos_bins": 64,
93
+ "rel_pos_bins": 32,
94
+ "second_input_size": 112,
95
+ "shape_size": 128,
96
+ "text_embed": true,
97
+ "torch_dtype": "float32",
98
+ "transformers_version": "4.44.2",
99
+ "type_vocab_size": 1,
100
+ "visual_embed": true,
101
+ "vocab_size": 50265
102
+ }
final_model/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
final_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994a2f4aa8bd3d07786e7fbbbe20f2db5908edef4ce7f693e15521ce458084f0
3
+ size 503785804
final_model/preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": false,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
final_model/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
final_model/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
final_model/tokenizer_config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "apply_ocr": false,
46
+ "bos_token": "<s>",
47
+ "clean_up_tokenization_spaces": true,
48
+ "cls_token": "<s>",
49
+ "cls_token_box": [
50
+ 0,
51
+ 0,
52
+ 0,
53
+ 0
54
+ ],
55
+ "eos_token": "</s>",
56
+ "errors": "replace",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "<pad>",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv3Processor",
69
+ "sep_token": "</s>",
70
+ "sep_token_box": [
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0
75
+ ],
76
+ "tokenizer_class": "LayoutLMv3Tokenizer",
77
+ "trim_offsets": true,
78
+ "unk_token": "<unk>"
79
+ }
final_model/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5e04906db8d143b024487559039b9ce9ba50cddee0d0a238bae2cfb34b4845
3
+ size 5240
final_model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
logs/events.out.tfevents.1728290538.5c2dd74a4ce9.715.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abc7156ebf6418efa41d65971206d2b9b81245fb7ca6656b713bd1d0f3bb48d
3
+ size 7628
logs/events.out.tfevents.1728291424.5c2dd74a4ce9.2377.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb02c81322080dd047170323b1af425a1bf90bef86a9f6f1e9ad4d123050acff
3
+ size 18256
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:994a2f4aa8bd3d07786e7fbbbe20f2db5908edef4ce7f693e15521ce458084f0
3
+ size 503785804
preprocessor_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": false,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv3Processor",
19
+ "resample": 2,
20
+ "rescale_factor": 0.00392156862745098,
21
+ "size": {
22
+ "height": 224,
23
+ "width": 224
24
+ },
25
+ "tesseract_config": ""
26
+ }
raw_data/dataset_dict.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"splits": ["train", "test"]}
raw_data/test/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a69746ea998f07c57664342e09716ddc3037bc1e078a9271af059b0e0ec8cc6
3
+ size 5806672
raw_data/test/dataset_info.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "id": {
6
+ "dtype": "string",
7
+ "_type": "Value"
8
+ },
9
+ "tokens": {
10
+ "feature": {
11
+ "dtype": "string",
12
+ "_type": "Value"
13
+ },
14
+ "_type": "Sequence"
15
+ },
16
+ "bboxes": {
17
+ "feature": {
18
+ "feature": {
19
+ "dtype": "int64",
20
+ "_type": "Value"
21
+ },
22
+ "_type": "Sequence"
23
+ },
24
+ "_type": "Sequence"
25
+ },
26
+ "ner_tags": {
27
+ "feature": {
28
+ "names": [
29
+ "B-B-ADDRESS",
30
+ "B-B-NAME",
31
+ "B-INVOICE NO",
32
+ "B-ORDER DATE",
33
+ "B-S-ADDRESS",
34
+ "B-S-NAME",
35
+ "B-TOTAL GROSS",
36
+ "E-B-ADDRESS",
37
+ "E-B-NAME",
38
+ "E-INVOICE NO",
39
+ "E-ORDER DATE",
40
+ "E-S-ADDRESS",
41
+ "E-S-NAME",
42
+ "E-TOTAL GROSS",
43
+ "I-B-ADDRESS",
44
+ "I-B-NAME",
45
+ "I-INVOICE NO",
46
+ "I-ORDER DATE",
47
+ "I-S-ADDRESS",
48
+ "I-S-NAME",
49
+ "O",
50
+ "S-B-ADDRESS",
51
+ "S-B-NAME",
52
+ "S-GST NO",
53
+ "S-INVOICE NO",
54
+ "S-ORDER DATE",
55
+ "S-ORDER NO",
56
+ "S-S-ADDRESS",
57
+ "S-TOTAL GROSS"
58
+ ],
59
+ "_type": "ClassLabel"
60
+ },
61
+ "_type": "Sequence"
62
+ },
63
+ "image": {
64
+ "_type": "Image"
65
+ }
66
+ },
67
+ "homepage": "",
68
+ "license": ""
69
+ }
raw_data/test/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "9e2aa009940d62e2",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
raw_data/train/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a24f56f1b2400bf3226c08c5c4dbed8a3a5b65070ec05678dbdc5cf26e23ec
3
+ size 57104056
raw_data/train/dataset_info.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "id": {
6
+ "dtype": "string",
7
+ "_type": "Value"
8
+ },
9
+ "tokens": {
10
+ "feature": {
11
+ "dtype": "string",
12
+ "_type": "Value"
13
+ },
14
+ "_type": "Sequence"
15
+ },
16
+ "bboxes": {
17
+ "feature": {
18
+ "feature": {
19
+ "dtype": "int64",
20
+ "_type": "Value"
21
+ },
22
+ "_type": "Sequence"
23
+ },
24
+ "_type": "Sequence"
25
+ },
26
+ "ner_tags": {
27
+ "feature": {
28
+ "names": [
29
+ "B-B-ADDRESS",
30
+ "B-B-NAME",
31
+ "B-INVOICE NO",
32
+ "B-ORDER DATE",
33
+ "B-S-ADDRESS",
34
+ "B-S-NAME",
35
+ "B-TOTAL GROSS",
36
+ "E-B-ADDRESS",
37
+ "E-B-NAME",
38
+ "E-INVOICE NO",
39
+ "E-ORDER DATE",
40
+ "E-S-ADDRESS",
41
+ "E-S-NAME",
42
+ "E-TOTAL GROSS",
43
+ "I-B-ADDRESS",
44
+ "I-B-NAME",
45
+ "I-INVOICE NO",
46
+ "I-ORDER DATE",
47
+ "I-S-ADDRESS",
48
+ "I-S-NAME",
49
+ "O",
50
+ "S-B-ADDRESS",
51
+ "S-B-NAME",
52
+ "S-GST NO",
53
+ "S-INVOICE NO",
54
+ "S-ORDER DATE",
55
+ "S-ORDER NO",
56
+ "S-S-ADDRESS",
57
+ "S-TOTAL GROSS"
58
+ ],
59
+ "_type": "ClassLabel"
60
+ },
61
+ "_type": "Sequence"
62
+ },
63
+ "image": {
64
+ "_type": "Image"
65
+ }
66
+ },
67
+ "homepage": "",
68
+ "license": ""
69
+ }
raw_data/train/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "e6109b805c4478b6",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": null,
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": true,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "apply_ocr": false,
46
+ "bos_token": "<s>",
47
+ "clean_up_tokenization_spaces": true,
48
+ "cls_token": "<s>",
49
+ "cls_token_box": [
50
+ 0,
51
+ 0,
52
+ 0,
53
+ 0
54
+ ],
55
+ "eos_token": "</s>",
56
+ "errors": "replace",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "<pad>",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv3Processor",
69
+ "sep_token": "</s>",
70
+ "sep_token_box": [
71
+ 0,
72
+ 0,
73
+ 0,
74
+ 0
75
+ ],
76
+ "tokenizer_class": "LayoutLMv3Tokenizer",
77
+ "trim_offsets": true,
78
+ "unk_token": "<unk>"
79
+ }
train_split/data-00000-of-00001.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f3cde00049331cd7fc7d92525adeca208ca78a71151c5cd8f78ff7b4a5c2afd
3
+ size 57202480
train_split/dataset_info.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "citation": "",
3
+ "description": "",
4
+ "features": {
5
+ "pixel_values": {
6
+ "shape": [
7
+ 3,
8
+ 224,
9
+ 224
10
+ ],
11
+ "dtype": "float32",
12
+ "_type": "Array3D"
13
+ },
14
+ "input_ids": {
15
+ "feature": {
16
+ "dtype": "int64",
17
+ "_type": "Value"
18
+ },
19
+ "_type": "Sequence"
20
+ },
21
+ "attention_mask": {
22
+ "feature": {
23
+ "dtype": "int64",
24
+ "_type": "Value"
25
+ },
26
+ "_type": "Sequence"
27
+ },
28
+ "bbox": {
29
+ "shape": [
30
+ 512,
31
+ 4
32
+ ],
33
+ "dtype": "int64",
34
+ "_type": "Array2D"
35
+ },
36
+ "labels": {
37
+ "feature": {
38
+ "names": [
39
+ "B-B-ADDRESS",
40
+ "B-B-NAME",
41
+ "B-INVOICE NO",
42
+ "B-ORDER DATE",
43
+ "B-S-ADDRESS",
44
+ "B-S-NAME",
45
+ "B-TOTAL GROSS",
46
+ "E-B-ADDRESS",
47
+ "E-B-NAME",
48
+ "E-INVOICE NO",
49
+ "E-ORDER DATE",
50
+ "E-S-ADDRESS",
51
+ "E-S-NAME",
52
+ "E-TOTAL GROSS",
53
+ "I-B-ADDRESS",
54
+ "I-B-NAME",
55
+ "I-INVOICE NO",
56
+ "I-ORDER DATE",
57
+ "I-S-ADDRESS",
58
+ "I-S-NAME",
59
+ "O",
60
+ "S-B-ADDRESS",
61
+ "S-B-NAME",
62
+ "S-GST NO",
63
+ "S-INVOICE NO",
64
+ "S-ORDER DATE",
65
+ "S-ORDER NO",
66
+ "S-S-ADDRESS",
67
+ "S-TOTAL GROSS"
68
+ ],
69
+ "_type": "ClassLabel"
70
+ },
71
+ "_type": "Sequence"
72
+ }
73
+ },
74
+ "homepage": "",
75
+ "license": ""
76
+ }
train_split/state.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_data_files": [
3
+ {
4
+ "filename": "data-00000-of-00001.arrow"
5
+ }
6
+ ],
7
+ "_fingerprint": "d61dd9c3e636acc6",
8
+ "_format_columns": null,
9
+ "_format_kwargs": {},
10
+ "_format_type": "torch",
11
+ "_output_all_columns": false,
12
+ "_split": null
13
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a5e04906db8d143b024487559039b9ce9ba50cddee0d0a238bae2cfb34b4845
3
+ size 5240
vocab.json ADDED
The diff for this file is too large to render. See raw diff