HKAB commited on
Commit
8ee4ae6
1 Parent(s): 0de4209

first commit

Browse files
README.md CHANGED
@@ -1,3 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
 
1
+
2
+ # Whisper Finetune 1 Notebook
3
+
4
+ In this experiment, Whisper (base) is finetuned on VinBigData 100h dataset, but with special pre-processing:
5
+ - Remove sentence with `<unk>` token (The data is clean and good compare to other open source Vietnamese data, but the transcript is the output of a larger model from Vinbigdata - Kaldi I think. I don't know if it is later verified by human but a few of them still contain `<unk>` token)
6
+ - Punctuation and Capitalization restoration by [dragonSwing/xlm-roberta-capu](https://huggingface.co/dragonSwing/xlm-roberta-capu)
7
+ - Spoken to written transcript [nguyenvulebinh/spoken-norm](https://github.com/nguyenvulebinh/spoken-norm)
8
+
9
+ As state in the [paper](https://arxiv.org/pdf/2212.04356.pdf):
10
+ > Recent research has shown that training on datasets of mixed human and machine-generated data can significantly impair the performance of translation systems (Ghorbani et al., 2021). In order to avoid learning “transcript-ese”, we developed many heuristics to detect and remove machine-generated transcripts from the training datase
11
+
12
+ Whisper output is already in written form, and we would want to keep this ability by doing the last 2 preprocessing step. **However, the result is not perfect**.
13
+
14
+
15
+ ## Installation
16
+
17
+ In case you don't know how to use [nguyenvulebinh/spoken-norm](https://github.com/nguyenvulebinh/spoken-norm). Use this [Docker](https://hub.docker.com/r/huggingface/transformers-pytorch-gpu/tags?page=1&name=4.17) and this [Inference code](https://huggingface.co/spaces/nguyenvulebinh/spoken-norm-taggen/tree/main)
18
+ ## Sample results
19
+
20
+ Origin pred | Finetune pred | References |
21
+ |--|--|--|
22
+ |Văn hóa và bộ lạc cổ sưa đã bắt đầu dữ những công bật này để dễ lấy sữa tóc, thịt và da.|Văn hóa và bộ lạc cổ xưa đã bắt đầu giữ những con vật này để dễ lấy sữa tóc thực và gia.|Văn hóa và bộ lạc cổ xưa đã bắt đầu giữ những con vật này để dễ lấy sữa, tóc, thịt, và da.|
23
+ |Nói My Spring Book, Tăng này đã giúp đời tiếng các thúc chối thuân 5 chẳng liền.|Đối với Sờ riêng Búc, trận này đã giúp đỡ tiếng các tốc chúi thua 5 chặng liền.|Đối với Springboks, trận này đã giúp đội tuyển kết thúc chuỗi thua 5 trận liền.|
24
+ |Nó cũng tấn công mọi thứ trong nước, ngày cả khủng lòng khẩn lò như tí vết cũng không phải là đối thủ với nó.|Nó cũng tấn công mọi thứ trong nước, ngay cả khủng long khổng lồ như Tricic cũng không phải là đối thủ bên nó.|Nó cũng tấn công mọi thứ trong nước; ngay cả khủng long khổng lồ như T. rex cũng không phải là đối thủ với nó.|
25
+ |Xong người có mặt quá lớn nên việc mọi người tới được nơi tổ chức lễ tan tại Quảng Trường Thánh Bí Tơ là không thể.|Số người có mặt quá lớn nên việc mọi người tới được nơi tổ chức lễ tang tại Quảng Trường Thánh B tơ là không thể.|Số người có mặt quá lớn nên việc mọi người tới được nơi tổ chức lễ tang tại Quảng trường Thánh Peter là không thể.|
26
+ |Cho ó là lục địa tương nói nhỏ nhưng có nhiều quốc gia đục lập. Thông thường, việc đi qua nhiều quốc gia đồng nghỉa với việc phải xinh thị thức và sách, họ chứ nhiều lần.|Cho là lục địa tương đối nhỏ nhưng có nhiều quốc gia độc lập, thông thường việc đi qua nhiều quốc gia đồng nghĩa với việc phải xin thị thực và xét hoàn chiếu nhiều lần.|Châu Âu là lục địa tương đối nhỏ nhưng có nhiều quốc gia độc lập. Thông thường, việc đi qua nhiều quốc gia đồng nghĩa với việc phải xin thị thực và xét hộ chiếu nhiều lần.|
27
+
28
+
29
+ ## Performance on Fleurs (800 test audio)
30
+
31
+ |Metric|openai/whisper-base|whisper-base finetuned|
32
+ |--|--|--|
33
+ |Un-normalized text WER|51%|35%|
34
+
35
+ Training parameters (full in `train.py`):
36
+ ```
37
+ batch_size = 16
38
+ num_epochs = 10
39
+ learning_rate=5e-4
40
+ warmup_steps=2000,
41
+ ```
42
+ ## Checkpoint to play with
43
+
44
+ Updating...
45
+
46
  ---
47
  license: mit
48
  ---
added_tokens.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|0.00|>": 50364,
3
+ "<|0.02|>": 50365,
4
+ "<|0.04|>": 50366,
5
+ "<|0.06|>": 50367,
6
+ "<|0.08|>": 50368,
7
+ "<|0.10|>": 50369,
8
+ "<|0.12|>": 50370,
9
+ "<|0.14|>": 50371,
10
+ "<|0.16|>": 50372,
11
+ "<|0.18|>": 50373,
12
+ "<|0.20|>": 50374,
13
+ "<|0.22|>": 50375,
14
+ "<|0.24|>": 50376,
15
+ "<|0.26|>": 50377,
16
+ "<|0.28|>": 50378,
17
+ "<|0.30|>": 50379,
18
+ "<|0.32|>": 50380,
19
+ "<|0.34|>": 50381,
20
+ "<|0.36|>": 50382,
21
+ "<|0.38|>": 50383,
22
+ "<|0.40|>": 50384,
23
+ "<|0.42|>": 50385,
24
+ "<|0.44|>": 50386,
25
+ "<|0.46|>": 50387,
26
+ "<|0.48|>": 50388,
27
+ "<|0.50|>": 50389,
28
+ "<|0.52|>": 50390,
29
+ "<|0.54|>": 50391,
30
+ "<|0.56|>": 50392,
31
+ "<|0.58|>": 50393,
32
+ "<|0.60|>": 50394,
33
+ "<|0.62|>": 50395,
34
+ "<|0.64|>": 50396,
35
+ "<|0.66|>": 50397,
36
+ "<|0.68|>": 50398,
37
+ "<|0.70|>": 50399,
38
+ "<|0.72|>": 50400,
39
+ "<|0.74|>": 50401,
40
+ "<|0.76|>": 50402,
41
+ "<|0.78|>": 50403,
42
+ "<|0.80|>": 50404,
43
+ "<|0.82|>": 50405,
44
+ "<|0.84|>": 50406,
45
+ "<|0.86|>": 50407,
46
+ "<|0.88|>": 50408,
47
+ "<|0.90|>": 50409,
48
+ "<|0.92|>": 50410,
49
+ "<|0.94|>": 50411,
50
+ "<|0.96|>": 50412,
51
+ "<|0.98|>": 50413,
52
+ "<|1.00|>": 50414,
53
+ "<|1.02|>": 50415,
54
+ "<|1.04|>": 50416,
55
+ "<|1.06|>": 50417,
56
+ "<|1.08|>": 50418,
57
+ "<|1.10|>": 50419,
58
+ "<|1.12|>": 50420,
59
+ "<|1.14|>": 50421,
60
+ "<|1.16|>": 50422,
61
+ "<|1.18|>": 50423,
62
+ "<|1.20|>": 50424,
63
+ "<|1.22|>": 50425,
64
+ "<|1.24|>": 50426,
65
+ "<|1.26|>": 50427,
66
+ "<|1.28|>": 50428,
67
+ "<|1.30|>": 50429,
68
+ "<|1.32|>": 50430,
69
+ "<|1.34|>": 50431,
70
+ "<|1.36|>": 50432,
71
+ "<|1.38|>": 50433,
72
+ "<|1.40|>": 50434,
73
+ "<|1.42|>": 50435,
74
+ "<|1.44|>": 50436,
75
+ "<|1.46|>": 50437,
76
+ "<|1.48|>": 50438,
77
+ "<|1.50|>": 50439,
78
+ "<|1.52|>": 50440,
79
+ "<|1.54|>": 50441,
80
+ "<|1.56|>": 50442,
81
+ "<|1.58|>": 50443,
82
+ "<|1.60|>": 50444,
83
+ "<|1.62|>": 50445,
84
+ "<|1.64|>": 50446,
85
+ "<|1.66|>": 50447,
86
+ "<|1.68|>": 50448,
87
+ "<|1.70|>": 50449,
88
+ "<|1.72|>": 50450,
89
+ "<|1.74|>": 50451,
90
+ "<|1.76|>": 50452,
91
+ "<|1.78|>": 50453,
92
+ "<|1.80|>": 50454,
93
+ "<|1.82|>": 50455,
94
+ "<|1.84|>": 50456,
95
+ "<|1.86|>": 50457,
96
+ "<|1.88|>": 50458,
97
+ "<|1.90|>": 50459,
98
+ "<|1.92|>": 50460,
99
+ "<|1.94|>": 50461,
100
+ "<|1.96|>": 50462,
101
+ "<|1.98|>": 50463,
102
+ "<|10.00|>": 50864,
103
+ "<|10.02|>": 50865,
104
+ "<|10.04|>": 50866,
105
+ "<|10.06|>": 50867,
106
+ "<|10.08|>": 50868,
107
+ "<|10.10|>": 50869,
108
+ "<|10.12|>": 50870,
109
+ "<|10.14|>": 50871,
110
+ "<|10.16|>": 50872,
111
+ "<|10.18|>": 50873,
112
+ "<|10.20|>": 50874,
113
+ "<|10.22|>": 50875,
114
+ "<|10.24|>": 50876,
115
+ "<|10.26|>": 50877,
116
+ "<|10.28|>": 50878,
117
+ "<|10.30|>": 50879,
118
+ "<|10.32|>": 50880,
119
+ "<|10.34|>": 50881,
120
+ "<|10.36|>": 50882,
121
+ "<|10.38|>": 50883,
122
+ "<|10.40|>": 50884,
123
+ "<|10.42|>": 50885,
124
+ "<|10.44|>": 50886,
125
+ "<|10.46|>": 50887,
126
+ "<|10.48|>": 50888,
127
+ "<|10.50|>": 50889,
128
+ "<|10.52|>": 50890,
129
+ "<|10.54|>": 50891,
130
+ "<|10.56|>": 50892,
131
+ "<|10.58|>": 50893,
132
+ "<|10.60|>": 50894,
133
+ "<|10.62|>": 50895,
134
+ "<|10.64|>": 50896,
135
+ "<|10.66|>": 50897,
136
+ "<|10.68|>": 50898,
137
+ "<|10.70|>": 50899,
138
+ "<|10.72|>": 50900,
139
+ "<|10.74|>": 50901,
140
+ "<|10.76|>": 50902,
141
+ "<|10.78|>": 50903,
142
+ "<|10.80|>": 50904,
143
+ "<|10.82|>": 50905,
144
+ "<|10.84|>": 50906,
145
+ "<|10.86|>": 50907,
146
+ "<|10.88|>": 50908,
147
+ "<|10.90|>": 50909,
148
+ "<|10.92|>": 50910,
149
+ "<|10.94|>": 50911,
150
+ "<|10.96|>": 50912,
151
+ "<|10.98|>": 50913,
152
+ "<|11.00|>": 50914,
153
+ "<|11.02|>": 50915,
154
+ "<|11.04|>": 50916,
155
+ "<|11.06|>": 50917,
156
+ "<|11.08|>": 50918,
157
+ "<|11.10|>": 50919,
158
+ "<|11.12|>": 50920,
159
+ "<|11.14|>": 50921,
160
+ "<|11.16|>": 50922,
161
+ "<|11.18|>": 50923,
162
+ "<|11.20|>": 50924,
163
+ "<|11.22|>": 50925,
164
+ "<|11.24|>": 50926,
165
+ "<|11.26|>": 50927,
166
+ "<|11.28|>": 50928,
167
+ "<|11.30|>": 50929,
168
+ "<|11.32|>": 50930,
169
+ "<|11.34|>": 50931,
170
+ "<|11.36|>": 50932,
171
+ "<|11.38|>": 50933,
172
+ "<|11.40|>": 50934,
173
+ "<|11.42|>": 50935,
174
+ "<|11.44|>": 50936,
175
+ "<|11.46|>": 50937,
176
+ "<|11.48|>": 50938,
177
+ "<|11.50|>": 50939,
178
+ "<|11.52|>": 50940,
179
+ "<|11.54|>": 50941,
180
+ "<|11.56|>": 50942,
181
+ "<|11.58|>": 50943,
182
+ "<|11.60|>": 50944,
183
+ "<|11.62|>": 50945,
184
+ "<|11.64|>": 50946,
185
+ "<|11.66|>": 50947,
186
+ "<|11.68|>": 50948,
187
+ "<|11.70|>": 50949,
188
+ "<|11.72|>": 50950,
189
+ "<|11.74|>": 50951,
190
+ "<|11.76|>": 50952,
191
+ "<|11.78|>": 50953,
192
+ "<|11.80|>": 50954,
193
+ "<|11.82|>": 50955,
194
+ "<|11.84|>": 50956,
195
+ "<|11.86|>": 50957,
196
+ "<|11.88|>": 50958,
197
+ "<|11.90|>": 50959,
198
+ "<|11.92|>": 50960,
199
+ "<|11.94|>": 50961,
200
+ "<|11.96|>": 50962,
201
+ "<|11.98|>": 50963,
202
+ "<|12.00|>": 50964,
203
+ "<|12.02|>": 50965,
204
+ "<|12.04|>": 50966,
205
+ "<|12.06|>": 50967,
206
+ "<|12.08|>": 50968,
207
+ "<|12.10|>": 50969,
208
+ "<|12.12|>": 50970,
209
+ "<|12.14|>": 50971,
210
+ "<|12.16|>": 50972,
211
+ "<|12.18|>": 50973,
212
+ "<|12.20|>": 50974,
213
+ "<|12.22|>": 50975,
214
+ "<|12.24|>": 50976,
215
+ "<|12.26|>": 50977,
216
+ "<|12.28|>": 50978,
217
+ "<|12.30|>": 50979,
218
+ "<|12.32|>": 50980,
219
+ "<|12.34|>": 50981,
220
+ "<|12.36|>": 50982,
221
+ "<|12.38|>": 50983,
222
+ "<|12.40|>": 50984,
223
+ "<|12.42|>": 50985,
224
+ "<|12.44|>": 50986,
225
+ "<|12.46|>": 50987,
226
+ "<|12.48|>": 50988,
227
+ "<|12.50|>": 50989,
228
+ "<|12.52|>": 50990,
229
+ "<|12.54|>": 50991,
230
+ "<|12.56|>": 50992,
231
+ "<|12.58|>": 50993,
232
+ "<|12.60|>": 50994,
233
+ "<|12.62|>": 50995,
234
+ "<|12.64|>": 50996,
235
+ "<|12.66|>": 50997,
236
+ "<|12.68|>": 50998,
237
+ "<|12.70|>": 50999,
238
+ "<|12.72|>": 51000,
239
+ "<|12.74|>": 51001,
240
+ "<|12.76|>": 51002,
241
+ "<|12.78|>": 51003,
242
+ "<|12.80|>": 51004,
243
+ "<|12.82|>": 51005,
244
+ "<|12.84|>": 51006,
245
+ "<|12.86|>": 51007,
246
+ "<|12.88|>": 51008,
247
+ "<|12.90|>": 51009,
248
+ "<|12.92|>": 51010,
249
+ "<|12.94|>": 51011,
250
+ "<|12.96|>": 51012,
251
+ "<|12.98|>": 51013,
252
+ "<|13.00|>": 51014,
253
+ "<|13.02|>": 51015,
254
+ "<|13.04|>": 51016,
255
+ "<|13.06|>": 51017,
256
+ "<|13.08|>": 51018,
257
+ "<|13.10|>": 51019,
258
+ "<|13.12|>": 51020,
259
+ "<|13.14|>": 51021,
260
+ "<|13.16|>": 51022,
261
+ "<|13.18|>": 51023,
262
+ "<|13.20|>": 51024,
263
+ "<|13.22|>": 51025,
264
+ "<|13.24|>": 51026,
265
+ "<|13.26|>": 51027,
266
+ "<|13.28|>": 51028,
267
+ "<|13.30|>": 51029,
268
+ "<|13.32|>": 51030,
269
+ "<|13.34|>": 51031,
270
+ "<|13.36|>": 51032,
271
+ "<|13.38|>": 51033,
272
+ "<|13.40|>": 51034,
273
+ "<|13.42|>": 51035,
274
+ "<|13.44|>": 51036,
275
+ "<|13.46|>": 51037,
276
+ "<|13.48|>": 51038,
277
+ "<|13.50|>": 51039,
278
+ "<|13.52|>": 51040,
279
+ "<|13.54|>": 51041,
280
+ "<|13.56|>": 51042,
281
+ "<|13.58|>": 51043,
282
+ "<|13.60|>": 51044,
283
+ "<|13.62|>": 51045,
284
+ "<|13.64|>": 51046,
285
+ "<|13.66|>": 51047,
286
+ "<|13.68|>": 51048,
287
+ "<|13.70|>": 51049,
288
+ "<|13.72|>": 51050,
289
+ "<|13.74|>": 51051,
290
+ "<|13.76|>": 51052,
291
+ "<|13.78|>": 51053,
292
+ "<|13.80|>": 51054,
293
+ "<|13.82|>": 51055,
294
+ "<|13.84|>": 51056,
295
+ "<|13.86|>": 51057,
296
+ "<|13.88|>": 51058,
297
+ "<|13.90|>": 51059,
298
+ "<|13.92|>": 51060,
299
+ "<|13.94|>": 51061,
300
+ "<|13.96|>": 51062,
301
+ "<|13.98|>": 51063,
302
+ "<|14.00|>": 51064,
303
+ "<|14.02|>": 51065,
304
+ "<|14.04|>": 51066,
305
+ "<|14.06|>": 51067,
306
+ "<|14.08|>": 51068,
307
+ "<|14.10|>": 51069,
308
+ "<|14.12|>": 51070,
309
+ "<|14.14|>": 51071,
310
+ "<|14.16|>": 51072,
311
+ "<|14.18|>": 51073,
312
+ "<|14.20|>": 51074,
313
+ "<|14.22|>": 51075,
314
+ "<|14.24|>": 51076,
315
+ "<|14.26|>": 51077,
316
+ "<|14.28|>": 51078,
317
+ "<|14.30|>": 51079,
318
+ "<|14.32|>": 51080,
319
+ "<|14.34|>": 51081,
320
+ "<|14.36|>": 51082,
321
+ "<|14.38|>": 51083,
322
+ "<|14.40|>": 51084,
323
+ "<|14.42|>": 51085,
324
+ "<|14.44|>": 51086,
325
+ "<|14.46|>": 51087,
326
+ "<|14.48|>": 51088,
327
+ "<|14.50|>": 51089,
328
+ "<|14.52|>": 51090,
329
+ "<|14.54|>": 51091,
330
+ "<|14.56|>": 51092,
331
+ "<|14.58|>": 51093,
332
+ "<|14.60|>": 51094,
333
+ "<|14.62|>": 51095,
334
+ "<|14.64|>": 51096,
335
+ "<|14.66|>": 51097,
336
+ "<|14.68|>": 51098,
337
+ "<|14.70|>": 51099,
338
+ "<|14.72|>": 51100,
339
+ "<|14.74|>": 51101,
340
+ "<|14.76|>": 51102,
341
+ "<|14.78|>": 51103,
342
+ "<|14.80|>": 51104,
343
+ "<|14.82|>": 51105,
344
+ "<|14.84|>": 51106,
345
+ "<|14.86|>": 51107,
346
+ "<|14.88|>": 51108,
347
+ "<|14.90|>": 51109,
348
+ "<|14.92|>": 51110,
349
+ "<|14.94|>": 51111,
350
+ "<|14.96|>": 51112,
351
+ "<|14.98|>": 51113,
352
+ "<|15.00|>": 51114,
353
+ "<|15.02|>": 51115,
354
+ "<|15.04|>": 51116,
355
+ "<|15.06|>": 51117,
356
+ "<|15.08|>": 51118,
357
+ "<|15.10|>": 51119,
358
+ "<|15.12|>": 51120,
359
+ "<|15.14|>": 51121,
360
+ "<|15.16|>": 51122,
361
+ "<|15.18|>": 51123,
362
+ "<|15.20|>": 51124,
363
+ "<|15.22|>": 51125,
364
+ "<|15.24|>": 51126,
365
+ "<|15.26|>": 51127,
366
+ "<|15.28|>": 51128,
367
+ "<|15.30|>": 51129,
368
+ "<|15.32|>": 51130,
369
+ "<|15.34|>": 51131,
370
+ "<|15.36|>": 51132,
371
+ "<|15.38|>": 51133,
372
+ "<|15.40|>": 51134,
373
+ "<|15.42|>": 51135,
374
+ "<|15.44|>": 51136,
375
+ "<|15.46|>": 51137,
376
+ "<|15.48|>": 51138,
377
+ "<|15.50|>": 51139,
378
+ "<|15.52|>": 51140,
379
+ "<|15.54|>": 51141,
380
+ "<|15.56|>": 51142,
381
+ "<|15.58|>": 51143,
382
+ "<|15.60|>": 51144,
383
+ "<|15.62|>": 51145,
384
+ "<|15.64|>": 51146,
385
+ "<|15.66|>": 51147,
386
+ "<|15.68|>": 51148,
387
+ "<|15.70|>": 51149,
388
+ "<|15.72|>": 51150,
389
+ "<|15.74|>": 51151,
390
+ "<|15.76|>": 51152,
391
+ "<|15.78|>": 51153,
392
+ "<|15.80|>": 51154,
393
+ "<|15.82|>": 51155,
394
+ "<|15.84|>": 51156,
395
+ "<|15.86|>": 51157,
396
+ "<|15.88|>": 51158,
397
+ "<|15.90|>": 51159,
398
+ "<|15.92|>": 51160,
399
+ "<|15.94|>": 51161,
400
+ "<|15.96|>": 51162,
401
+ "<|15.98|>": 51163,
402
+ "<|16.00|>": 51164,
403
+ "<|16.02|>": 51165,
404
+ "<|16.04|>": 51166,
405
+ "<|16.06|>": 51167,
406
+ "<|16.08|>": 51168,
407
+ "<|16.10|>": 51169,
408
+ "<|16.12|>": 51170,
409
+ "<|16.14|>": 51171,
410
+ "<|16.16|>": 51172,
411
+ "<|16.18|>": 51173,
412
+ "<|16.20|>": 51174,
413
+ "<|16.22|>": 51175,
414
+ "<|16.24|>": 51176,
415
+ "<|16.26|>": 51177,
416
+ "<|16.28|>": 51178,
417
+ "<|16.30|>": 51179,
418
+ "<|16.32|>": 51180,
419
+ "<|16.34|>": 51181,
420
+ "<|16.36|>": 51182,
421
+ "<|16.38|>": 51183,
422
+ "<|16.40|>": 51184,
423
+ "<|16.42|>": 51185,
424
+ "<|16.44|>": 51186,
425
+ "<|16.46|>": 51187,
426
+ "<|16.48|>": 51188,
427
+ "<|16.50|>": 51189,
428
+ "<|16.52|>": 51190,
429
+ "<|16.54|>": 51191,
430
+ "<|16.56|>": 51192,
431
+ "<|16.58|>": 51193,
432
+ "<|16.60|>": 51194,
433
+ "<|16.62|>": 51195,
434
+ "<|16.64|>": 51196,
435
+ "<|16.66|>": 51197,
436
+ "<|16.68|>": 51198,
437
+ "<|16.70|>": 51199,
438
+ "<|16.72|>": 51200,
439
+ "<|16.74|>": 51201,
440
+ "<|16.76|>": 51202,
441
+ "<|16.78|>": 51203,
442
+ "<|16.80|>": 51204,
443
+ "<|16.82|>": 51205,
444
+ "<|16.84|>": 51206,
445
+ "<|16.86|>": 51207,
446
+ "<|16.88|>": 51208,
447
+ "<|16.90|>": 51209,
448
+ "<|16.92|>": 51210,
449
+ "<|16.94|>": 51211,
450
+ "<|16.96|>": 51212,
451
+ "<|16.98|>": 51213,
452
+ "<|17.00|>": 51214,
453
+ "<|17.02|>": 51215,
454
+ "<|17.04|>": 51216,
455
+ "<|17.06|>": 51217,
456
+ "<|17.08|>": 51218,
457
+ "<|17.10|>": 51219,
458
+ "<|17.12|>": 51220,
459
+ "<|17.14|>": 51221,
460
+ "<|17.16|>": 51222,
461
+ "<|17.18|>": 51223,
462
+ "<|17.20|>": 51224,
463
+ "<|17.22|>": 51225,
464
+ "<|17.24|>": 51226,
465
+ "<|17.26|>": 51227,
466
+ "<|17.28|>": 51228,
467
+ "<|17.30|>": 51229,
468
+ "<|17.32|>": 51230,
469
+ "<|17.34|>": 51231,
470
+ "<|17.36|>": 51232,
471
+ "<|17.38|>": 51233,
472
+ "<|17.40|>": 51234,
473
+ "<|17.42|>": 51235,
474
+ "<|17.44|>": 51236,
475
+ "<|17.46|>": 51237,
476
+ "<|17.48|>": 51238,
477
+ "<|17.50|>": 51239,
478
+ "<|17.52|>": 51240,
479
+ "<|17.54|>": 51241,
480
+ "<|17.56|>": 51242,
481
+ "<|17.58|>": 51243,
482
+ "<|17.60|>": 51244,
483
+ "<|17.62|>": 51245,
484
+ "<|17.64|>": 51246,
485
+ "<|17.66|>": 51247,
486
+ "<|17.68|>": 51248,
487
+ "<|17.70|>": 51249,
488
+ "<|17.72|>": 51250,
489
+ "<|17.74|>": 51251,
490
+ "<|17.76|>": 51252,
491
+ "<|17.78|>": 51253,
492
+ "<|17.80|>": 51254,
493
+ "<|17.82|>": 51255,
494
+ "<|17.84|>": 51256,
495
+ "<|17.86|>": 51257,
496
+ "<|17.88|>": 51258,
497
+ "<|17.90|>": 51259,
498
+ "<|17.92|>": 51260,
499
+ "<|17.94|>": 51261,
500
+ "<|17.96|>": 51262,
501
+ "<|17.98|>": 51263,
502
+ "<|18.00|>": 51264,
503
+ "<|18.02|>": 51265,
504
+ "<|18.04|>": 51266,
505
+ "<|18.06|>": 51267,
506
+ "<|18.08|>": 51268,
507
+ "<|18.10|>": 51269,
508
+ "<|18.12|>": 51270,
509
+ "<|18.14|>": 51271,
510
+ "<|18.16|>": 51272,
511
+ "<|18.18|>": 51273,
512
+ "<|18.20|>": 51274,
513
+ "<|18.22|>": 51275,
514
+ "<|18.24|>": 51276,
515
+ "<|18.26|>": 51277,
516
+ "<|18.28|>": 51278,
517
+ "<|18.30|>": 51279,
518
+ "<|18.32|>": 51280,
519
+ "<|18.34|>": 51281,
520
+ "<|18.36|>": 51282,
521
+ "<|18.38|>": 51283,
522
+ "<|18.40|>": 51284,
523
+ "<|18.42|>": 51285,
524
+ "<|18.44|>": 51286,
525
+ "<|18.46|>": 51287,
526
+ "<|18.48|>": 51288,
527
+ "<|18.50|>": 51289,
528
+ "<|18.52|>": 51290,
529
+ "<|18.54|>": 51291,
530
+ "<|18.56|>": 51292,
531
+ "<|18.58|>": 51293,
532
+ "<|18.60|>": 51294,
533
+ "<|18.62|>": 51295,
534
+ "<|18.64|>": 51296,
535
+ "<|18.66|>": 51297,
536
+ "<|18.68|>": 51298,
537
+ "<|18.70|>": 51299,
538
+ "<|18.72|>": 51300,
539
+ "<|18.74|>": 51301,
540
+ "<|18.76|>": 51302,
541
+ "<|18.78|>": 51303,
542
+ "<|18.80|>": 51304,
543
+ "<|18.82|>": 51305,
544
+ "<|18.84|>": 51306,
545
+ "<|18.86|>": 51307,
546
+ "<|18.88|>": 51308,
547
+ "<|18.90|>": 51309,
548
+ "<|18.92|>": 51310,
549
+ "<|18.94|>": 51311,
550
+ "<|18.96|>": 51312,
551
+ "<|18.98|>": 51313,
552
+ "<|19.00|>": 51314,
553
+ "<|19.02|>": 51315,
554
+ "<|19.04|>": 51316,
555
+ "<|19.06|>": 51317,
556
+ "<|19.08|>": 51318,
557
+ "<|19.10|>": 51319,
558
+ "<|19.12|>": 51320,
559
+ "<|19.14|>": 51321,
560
+ "<|19.16|>": 51322,
561
+ "<|19.18|>": 51323,
562
+ "<|19.20|>": 51324,
563
+ "<|19.22|>": 51325,
564
+ "<|19.24|>": 51326,
565
+ "<|19.26|>": 51327,
566
+ "<|19.28|>": 51328,
567
+ "<|19.30|>": 51329,
568
+ "<|19.32|>": 51330,
569
+ "<|19.34|>": 51331,
570
+ "<|19.36|>": 51332,
571
+ "<|19.38|>": 51333,
572
+ "<|19.40|>": 51334,
573
+ "<|19.42|>": 51335,
574
+ "<|19.44|>": 51336,
575
+ "<|19.46|>": 51337,
576
+ "<|19.48|>": 51338,
577
+ "<|19.50|>": 51339,
578
+ "<|19.52|>": 51340,
579
+ "<|19.54|>": 51341,
580
+ "<|19.56|>": 51342,
581
+ "<|19.58|>": 51343,
582
+ "<|19.60|>": 51344,
583
+ "<|19.62|>": 51345,
584
+ "<|19.64|>": 51346,
585
+ "<|19.66|>": 51347,
586
+ "<|19.68|>": 51348,
587
+ "<|19.70|>": 51349,
588
+ "<|19.72|>": 51350,
589
+ "<|19.74|>": 51351,
590
+ "<|19.76|>": 51352,
591
+ "<|19.78|>": 51353,
592
+ "<|19.80|>": 51354,
593
+ "<|19.82|>": 51355,
594
+ "<|19.84|>": 51356,
595
+ "<|19.86|>": 51357,
596
+ "<|19.88|>": 51358,
597
+ "<|19.90|>": 51359,
598
+ "<|19.92|>": 51360,
599
+ "<|19.94|>": 51361,
600
+ "<|19.96|>": 51362,
601
+ "<|19.98|>": 51363,
602
+ "<|2.00|>": 50464,
603
+ "<|2.02|>": 50465,
604
+ "<|2.04|>": 50466,
605
+ "<|2.06|>": 50467,
606
+ "<|2.08|>": 50468,
607
+ "<|2.10|>": 50469,
608
+ "<|2.12|>": 50470,
609
+ "<|2.14|>": 50471,
610
+ "<|2.16|>": 50472,
611
+ "<|2.18|>": 50473,
612
+ "<|2.20|>": 50474,
613
+ "<|2.22|>": 50475,
614
+ "<|2.24|>": 50476,
615
+ "<|2.26|>": 50477,
616
+ "<|2.28|>": 50478,
617
+ "<|2.30|>": 50479,
618
+ "<|2.32|>": 50480,
619
+ "<|2.34|>": 50481,
620
+ "<|2.36|>": 50482,
621
+ "<|2.38|>": 50483,
622
+ "<|2.40|>": 50484,
623
+ "<|2.42|>": 50485,
624
+ "<|2.44|>": 50486,
625
+ "<|2.46|>": 50487,
626
+ "<|2.48|>": 50488,
627
+ "<|2.50|>": 50489,
628
+ "<|2.52|>": 50490,
629
+ "<|2.54|>": 50491,
630
+ "<|2.56|>": 50492,
631
+ "<|2.58|>": 50493,
632
+ "<|2.60|>": 50494,
633
+ "<|2.62|>": 50495,
634
+ "<|2.64|>": 50496,
635
+ "<|2.66|>": 50497,
636
+ "<|2.68|>": 50498,
637
+ "<|2.70|>": 50499,
638
+ "<|2.72|>": 50500,
639
+ "<|2.74|>": 50501,
640
+ "<|2.76|>": 50502,
641
+ "<|2.78|>": 50503,
642
+ "<|2.80|>": 50504,
643
+ "<|2.82|>": 50505,
644
+ "<|2.84|>": 50506,
645
+ "<|2.86|>": 50507,
646
+ "<|2.88|>": 50508,
647
+ "<|2.90|>": 50509,
648
+ "<|2.92|>": 50510,
649
+ "<|2.94|>": 50511,
650
+ "<|2.96|>": 50512,
651
+ "<|2.98|>": 50513,
652
+ "<|20.00|>": 51364,
653
+ "<|20.02|>": 51365,
654
+ "<|20.04|>": 51366,
655
+ "<|20.06|>": 51367,
656
+ "<|20.08|>": 51368,
657
+ "<|20.10|>": 51369,
658
+ "<|20.12|>": 51370,
659
+ "<|20.14|>": 51371,
660
+ "<|20.16|>": 51372,
661
+ "<|20.18|>": 51373,
662
+ "<|20.20|>": 51374,
663
+ "<|20.22|>": 51375,
664
+ "<|20.24|>": 51376,
665
+ "<|20.26|>": 51377,
666
+ "<|20.28|>": 51378,
667
+ "<|20.30|>": 51379,
668
+ "<|20.32|>": 51380,
669
+ "<|20.34|>": 51381,
670
+ "<|20.36|>": 51382,
671
+ "<|20.38|>": 51383,
672
+ "<|20.40|>": 51384,
673
+ "<|20.42|>": 51385,
674
+ "<|20.44|>": 51386,
675
+ "<|20.46|>": 51387,
676
+ "<|20.48|>": 51388,
677
+ "<|20.50|>": 51389,
678
+ "<|20.52|>": 51390,
679
+ "<|20.54|>": 51391,
680
+ "<|20.56|>": 51392,
681
+ "<|20.58|>": 51393,
682
+ "<|20.60|>": 51394,
683
+ "<|20.62|>": 51395,
684
+ "<|20.64|>": 51396,
685
+ "<|20.66|>": 51397,
686
+ "<|20.68|>": 51398,
687
+ "<|20.70|>": 51399,
688
+ "<|20.72|>": 51400,
689
+ "<|20.74|>": 51401,
690
+ "<|20.76|>": 51402,
691
+ "<|20.78|>": 51403,
692
+ "<|20.80|>": 51404,
693
+ "<|20.82|>": 51405,
694
+ "<|20.84|>": 51406,
695
+ "<|20.86|>": 51407,
696
+ "<|20.88|>": 51408,
697
+ "<|20.90|>": 51409,
698
+ "<|20.92|>": 51410,
699
+ "<|20.94|>": 51411,
700
+ "<|20.96|>": 51412,
701
+ "<|20.98|>": 51413,
702
+ "<|21.00|>": 51414,
703
+ "<|21.02|>": 51415,
704
+ "<|21.04|>": 51416,
705
+ "<|21.06|>": 51417,
706
+ "<|21.08|>": 51418,
707
+ "<|21.10|>": 51419,
708
+ "<|21.12|>": 51420,
709
+ "<|21.14|>": 51421,
710
+ "<|21.16|>": 51422,
711
+ "<|21.18|>": 51423,
712
+ "<|21.20|>": 51424,
713
+ "<|21.22|>": 51425,
714
+ "<|21.24|>": 51426,
715
+ "<|21.26|>": 51427,
716
+ "<|21.28|>": 51428,
717
+ "<|21.30|>": 51429,
718
+ "<|21.32|>": 51430,
719
+ "<|21.34|>": 51431,
720
+ "<|21.36|>": 51432,
721
+ "<|21.38|>": 51433,
722
+ "<|21.40|>": 51434,
723
+ "<|21.42|>": 51435,
724
+ "<|21.44|>": 51436,
725
+ "<|21.46|>": 51437,
726
+ "<|21.48|>": 51438,
727
+ "<|21.50|>": 51439,
728
+ "<|21.52|>": 51440,
729
+ "<|21.54|>": 51441,
730
+ "<|21.56|>": 51442,
731
+ "<|21.58|>": 51443,
732
+ "<|21.60|>": 51444,
733
+ "<|21.62|>": 51445,
734
+ "<|21.64|>": 51446,
735
+ "<|21.66|>": 51447,
736
+ "<|21.68|>": 51448,
737
+ "<|21.70|>": 51449,
738
+ "<|21.72|>": 51450,
739
+ "<|21.74|>": 51451,
740
+ "<|21.76|>": 51452,
741
+ "<|21.78|>": 51453,
742
+ "<|21.80|>": 51454,
743
+ "<|21.82|>": 51455,
744
+ "<|21.84|>": 51456,
745
+ "<|21.86|>": 51457,
746
+ "<|21.88|>": 51458,
747
+ "<|21.90|>": 51459,
748
+ "<|21.92|>": 51460,
749
+ "<|21.94|>": 51461,
750
+ "<|21.96|>": 51462,
751
+ "<|21.98|>": 51463,
752
+ "<|22.00|>": 51464,
753
+ "<|22.02|>": 51465,
754
+ "<|22.04|>": 51466,
755
+ "<|22.06|>": 51467,
756
+ "<|22.08|>": 51468,
757
+ "<|22.10|>": 51469,
758
+ "<|22.12|>": 51470,
759
+ "<|22.14|>": 51471,
760
+ "<|22.16|>": 51472,
761
+ "<|22.18|>": 51473,
762
+ "<|22.20|>": 51474,
763
+ "<|22.22|>": 51475,
764
+ "<|22.24|>": 51476,
765
+ "<|22.26|>": 51477,
766
+ "<|22.28|>": 51478,
767
+ "<|22.30|>": 51479,
768
+ "<|22.32|>": 51480,
769
+ "<|22.34|>": 51481,
770
+ "<|22.36|>": 51482,
771
+ "<|22.38|>": 51483,
772
+ "<|22.40|>": 51484,
773
+ "<|22.42|>": 51485,
774
+ "<|22.44|>": 51486,
775
+ "<|22.46|>": 51487,
776
+ "<|22.48|>": 51488,
777
+ "<|22.50|>": 51489,
778
+ "<|22.52|>": 51490,
779
+ "<|22.54|>": 51491,
780
+ "<|22.56|>": 51492,
781
+ "<|22.58|>": 51493,
782
+ "<|22.60|>": 51494,
783
+ "<|22.62|>": 51495,
784
+ "<|22.64|>": 51496,
785
+ "<|22.66|>": 51497,
786
+ "<|22.68|>": 51498,
787
+ "<|22.70|>": 51499,
788
+ "<|22.72|>": 51500,
789
+ "<|22.74|>": 51501,
790
+ "<|22.76|>": 51502,
791
+ "<|22.78|>": 51503,
792
+ "<|22.80|>": 51504,
793
+ "<|22.82|>": 51505,
794
+ "<|22.84|>": 51506,
795
+ "<|22.86|>": 51507,
796
+ "<|22.88|>": 51508,
797
+ "<|22.90|>": 51509,
798
+ "<|22.92|>": 51510,
799
+ "<|22.94|>": 51511,
800
+ "<|22.96|>": 51512,
801
+ "<|22.98|>": 51513,
802
+ "<|23.00|>": 51514,
803
+ "<|23.02|>": 51515,
804
+ "<|23.04|>": 51516,
805
+ "<|23.06|>": 51517,
806
+ "<|23.08|>": 51518,
807
+ "<|23.10|>": 51519,
808
+ "<|23.12|>": 51520,
809
+ "<|23.14|>": 51521,
810
+ "<|23.16|>": 51522,
811
+ "<|23.18|>": 51523,
812
+ "<|23.20|>": 51524,
813
+ "<|23.22|>": 51525,
814
+ "<|23.24|>": 51526,
815
+ "<|23.26|>": 51527,
816
+ "<|23.28|>": 51528,
817
+ "<|23.30|>": 51529,
818
+ "<|23.32|>": 51530,
819
+ "<|23.34|>": 51531,
820
+ "<|23.36|>": 51532,
821
+ "<|23.38|>": 51533,
822
+ "<|23.40|>": 51534,
823
+ "<|23.42|>": 51535,
824
+ "<|23.44|>": 51536,
825
+ "<|23.46|>": 51537,
826
+ "<|23.48|>": 51538,
827
+ "<|23.50|>": 51539,
828
+ "<|23.52|>": 51540,
829
+ "<|23.54|>": 51541,
830
+ "<|23.56|>": 51542,
831
+ "<|23.58|>": 51543,
832
+ "<|23.60|>": 51544,
833
+ "<|23.62|>": 51545,
834
+ "<|23.64|>": 51546,
835
+ "<|23.66|>": 51547,
836
+ "<|23.68|>": 51548,
837
+ "<|23.70|>": 51549,
838
+ "<|23.72|>": 51550,
839
+ "<|23.74|>": 51551,
840
+ "<|23.76|>": 51552,
841
+ "<|23.78|>": 51553,
842
+ "<|23.80|>": 51554,
843
+ "<|23.82|>": 51555,
844
+ "<|23.84|>": 51556,
845
+ "<|23.86|>": 51557,
846
+ "<|23.88|>": 51558,
847
+ "<|23.90|>": 51559,
848
+ "<|23.92|>": 51560,
849
+ "<|23.94|>": 51561,
850
+ "<|23.96|>": 51562,
851
+ "<|23.98|>": 51563,
852
+ "<|24.00|>": 51564,
853
+ "<|24.02|>": 51565,
854
+ "<|24.04|>": 51566,
855
+ "<|24.06|>": 51567,
856
+ "<|24.08|>": 51568,
857
+ "<|24.10|>": 51569,
858
+ "<|24.12|>": 51570,
859
+ "<|24.14|>": 51571,
860
+ "<|24.16|>": 51572,
861
+ "<|24.18|>": 51573,
862
+ "<|24.20|>": 51574,
863
+ "<|24.22|>": 51575,
864
+ "<|24.24|>": 51576,
865
+ "<|24.26|>": 51577,
866
+ "<|24.28|>": 51578,
867
+ "<|24.30|>": 51579,
868
+ "<|24.32|>": 51580,
869
+ "<|24.34|>": 51581,
870
+ "<|24.36|>": 51582,
871
+ "<|24.38|>": 51583,
872
+ "<|24.40|>": 51584,
873
+ "<|24.42|>": 51585,
874
+ "<|24.44|>": 51586,
875
+ "<|24.46|>": 51587,
876
+ "<|24.48|>": 51588,
877
+ "<|24.50|>": 51589,
878
+ "<|24.52|>": 51590,
879
+ "<|24.54|>": 51591,
880
+ "<|24.56|>": 51592,
881
+ "<|24.58|>": 51593,
882
+ "<|24.60|>": 51594,
883
+ "<|24.62|>": 51595,
884
+ "<|24.64|>": 51596,
885
+ "<|24.66|>": 51597,
886
+ "<|24.68|>": 51598,
887
+ "<|24.70|>": 51599,
888
+ "<|24.72|>": 51600,
889
+ "<|24.74|>": 51601,
890
+ "<|24.76|>": 51602,
891
+ "<|24.78|>": 51603,
892
+ "<|24.80|>": 51604,
893
+ "<|24.82|>": 51605,
894
+ "<|24.84|>": 51606,
895
+ "<|24.86|>": 51607,
896
+ "<|24.88|>": 51608,
897
+ "<|24.90|>": 51609,
898
+ "<|24.92|>": 51610,
899
+ "<|24.94|>": 51611,
900
+ "<|24.96|>": 51612,
901
+ "<|24.98|>": 51613,
902
+ "<|25.00|>": 51614,
903
+ "<|25.02|>": 51615,
904
+ "<|25.04|>": 51616,
905
+ "<|25.06|>": 51617,
906
+ "<|25.08|>": 51618,
907
+ "<|25.10|>": 51619,
908
+ "<|25.12|>": 51620,
909
+ "<|25.14|>": 51621,
910
+ "<|25.16|>": 51622,
911
+ "<|25.18|>": 51623,
912
+ "<|25.20|>": 51624,
913
+ "<|25.22|>": 51625,
914
+ "<|25.24|>": 51626,
915
+ "<|25.26|>": 51627,
916
+ "<|25.28|>": 51628,
917
+ "<|25.30|>": 51629,
918
+ "<|25.32|>": 51630,
919
+ "<|25.34|>": 51631,
920
+ "<|25.36|>": 51632,
921
+ "<|25.38|>": 51633,
922
+ "<|25.40|>": 51634,
923
+ "<|25.42|>": 51635,
924
+ "<|25.44|>": 51636,
925
+ "<|25.46|>": 51637,
926
+ "<|25.48|>": 51638,
927
+ "<|25.50|>": 51639,
928
+ "<|25.52|>": 51640,
929
+ "<|25.54|>": 51641,
930
+ "<|25.56|>": 51642,
931
+ "<|25.58|>": 51643,
932
+ "<|25.60|>": 51644,
933
+ "<|25.62|>": 51645,
934
+ "<|25.64|>": 51646,
935
+ "<|25.66|>": 51647,
936
+ "<|25.68|>": 51648,
937
+ "<|25.70|>": 51649,
938
+ "<|25.72|>": 51650,
939
+ "<|25.74|>": 51651,
940
+ "<|25.76|>": 51652,
941
+ "<|25.78|>": 51653,
942
+ "<|25.80|>": 51654,
943
+ "<|25.82|>": 51655,
944
+ "<|25.84|>": 51656,
945
+ "<|25.86|>": 51657,
946
+ "<|25.88|>": 51658,
947
+ "<|25.90|>": 51659,
948
+ "<|25.92|>": 51660,
949
+ "<|25.94|>": 51661,
950
+ "<|25.96|>": 51662,
951
+ "<|25.98|>": 51663,
952
+ "<|26.00|>": 51664,
953
+ "<|26.02|>": 51665,
954
+ "<|26.04|>": 51666,
955
+ "<|26.06|>": 51667,
956
+ "<|26.08|>": 51668,
957
+ "<|26.10|>": 51669,
958
+ "<|26.12|>": 51670,
959
+ "<|26.14|>": 51671,
960
+ "<|26.16|>": 51672,
961
+ "<|26.18|>": 51673,
962
+ "<|26.20|>": 51674,
963
+ "<|26.22|>": 51675,
964
+ "<|26.24|>": 51676,
965
+ "<|26.26|>": 51677,
966
+ "<|26.28|>": 51678,
967
+ "<|26.30|>": 51679,
968
+ "<|26.32|>": 51680,
969
+ "<|26.34|>": 51681,
970
+ "<|26.36|>": 51682,
971
+ "<|26.38|>": 51683,
972
+ "<|26.40|>": 51684,
973
+ "<|26.42|>": 51685,
974
+ "<|26.44|>": 51686,
975
+ "<|26.46|>": 51687,
976
+ "<|26.48|>": 51688,
977
+ "<|26.50|>": 51689,
978
+ "<|26.52|>": 51690,
979
+ "<|26.54|>": 51691,
980
+ "<|26.56|>": 51692,
981
+ "<|26.58|>": 51693,
982
+ "<|26.60|>": 51694,
983
+ "<|26.62|>": 51695,
984
+ "<|26.64|>": 51696,
985
+ "<|26.66|>": 51697,
986
+ "<|26.68|>": 51698,
987
+ "<|26.70|>": 51699,
988
+ "<|26.72|>": 51700,
989
+ "<|26.74|>": 51701,
990
+ "<|26.76|>": 51702,
991
+ "<|26.78|>": 51703,
992
+ "<|26.80|>": 51704,
993
+ "<|26.82|>": 51705,
994
+ "<|26.84|>": 51706,
995
+ "<|26.86|>": 51707,
996
+ "<|26.88|>": 51708,
997
+ "<|26.90|>": 51709,
998
+ "<|26.92|>": 51710,
999
+ "<|26.94|>": 51711,
1000
+ "<|26.96|>": 51712,
1001
+ "<|26.98|>": 51713,
1002
+ "<|27.00|>": 51714,
1003
+ "<|27.02|>": 51715,
1004
+ "<|27.04|>": 51716,
1005
+ "<|27.06|>": 51717,
1006
+ "<|27.08|>": 51718,
1007
+ "<|27.10|>": 51719,
1008
+ "<|27.12|>": 51720,
1009
+ "<|27.14|>": 51721,
1010
+ "<|27.16|>": 51722,
1011
+ "<|27.18|>": 51723,
1012
+ "<|27.20|>": 51724,
1013
+ "<|27.22|>": 51725,
1014
+ "<|27.24|>": 51726,
1015
+ "<|27.26|>": 51727,
1016
+ "<|27.28|>": 51728,
1017
+ "<|27.30|>": 51729,
1018
+ "<|27.32|>": 51730,
1019
+ "<|27.34|>": 51731,
1020
+ "<|27.36|>": 51732,
1021
+ "<|27.38|>": 51733,
1022
+ "<|27.40|>": 51734,
1023
+ "<|27.42|>": 51735,
1024
+ "<|27.44|>": 51736,
1025
+ "<|27.46|>": 51737,
1026
+ "<|27.48|>": 51738,
1027
+ "<|27.50|>": 51739,
1028
+ "<|27.52|>": 51740,
1029
+ "<|27.54|>": 51741,
1030
+ "<|27.56|>": 51742,
1031
+ "<|27.58|>": 51743,
1032
+ "<|27.60|>": 51744,
1033
+ "<|27.62|>": 51745,
1034
+ "<|27.64|>": 51746,
1035
+ "<|27.66|>": 51747,
1036
+ "<|27.68|>": 51748,
1037
+ "<|27.70|>": 51749,
1038
+ "<|27.72|>": 51750,
1039
+ "<|27.74|>": 51751,
1040
+ "<|27.76|>": 51752,
1041
+ "<|27.78|>": 51753,
1042
+ "<|27.80|>": 51754,
1043
+ "<|27.82|>": 51755,
1044
+ "<|27.84|>": 51756,
1045
+ "<|27.86|>": 51757,
1046
+ "<|27.88|>": 51758,
1047
+ "<|27.90|>": 51759,
1048
+ "<|27.92|>": 51760,
1049
+ "<|27.94|>": 51761,
1050
+ "<|27.96|>": 51762,
1051
+ "<|27.98|>": 51763,
1052
+ "<|28.00|>": 51764,
1053
+ "<|28.02|>": 51765,
1054
+ "<|28.04|>": 51766,
1055
+ "<|28.06|>": 51767,
1056
+ "<|28.08|>": 51768,
1057
+ "<|28.10|>": 51769,
1058
+ "<|28.12|>": 51770,
1059
+ "<|28.14|>": 51771,
1060
+ "<|28.16|>": 51772,
1061
+ "<|28.18|>": 51773,
1062
+ "<|28.20|>": 51774,
1063
+ "<|28.22|>": 51775,
1064
+ "<|28.24|>": 51776,
1065
+ "<|28.26|>": 51777,
1066
+ "<|28.28|>": 51778,
1067
+ "<|28.30|>": 51779,
1068
+ "<|28.32|>": 51780,
1069
+ "<|28.34|>": 51781,
1070
+ "<|28.36|>": 51782,
1071
+ "<|28.38|>": 51783,
1072
+ "<|28.40|>": 51784,
1073
+ "<|28.42|>": 51785,
1074
+ "<|28.44|>": 51786,
1075
+ "<|28.46|>": 51787,
1076
+ "<|28.48|>": 51788,
1077
+ "<|28.50|>": 51789,
1078
+ "<|28.52|>": 51790,
1079
+ "<|28.54|>": 51791,
1080
+ "<|28.56|>": 51792,
1081
+ "<|28.58|>": 51793,
1082
+ "<|28.60|>": 51794,
1083
+ "<|28.62|>": 51795,
1084
+ "<|28.64|>": 51796,
1085
+ "<|28.66|>": 51797,
1086
+ "<|28.68|>": 51798,
1087
+ "<|28.70|>": 51799,
1088
+ "<|28.72|>": 51800,
1089
+ "<|28.74|>": 51801,
1090
+ "<|28.76|>": 51802,
1091
+ "<|28.78|>": 51803,
1092
+ "<|28.80|>": 51804,
1093
+ "<|28.82|>": 51805,
1094
+ "<|28.84|>": 51806,
1095
+ "<|28.86|>": 51807,
1096
+ "<|28.88|>": 51808,
1097
+ "<|28.90|>": 51809,
1098
+ "<|28.92|>": 51810,
1099
+ "<|28.94|>": 51811,
1100
+ "<|28.96|>": 51812,
1101
+ "<|28.98|>": 51813,
1102
+ "<|29.00|>": 51814,
1103
+ "<|29.02|>": 51815,
1104
+ "<|29.04|>": 51816,
1105
+ "<|29.06|>": 51817,
1106
+ "<|29.08|>": 51818,
1107
+ "<|29.10|>": 51819,
1108
+ "<|29.12|>": 51820,
1109
+ "<|29.14|>": 51821,
1110
+ "<|29.16|>": 51822,
1111
+ "<|29.18|>": 51823,
1112
+ "<|29.20|>": 51824,
1113
+ "<|29.22|>": 51825,
1114
+ "<|29.24|>": 51826,
1115
+ "<|29.26|>": 51827,
1116
+ "<|29.28|>": 51828,
1117
+ "<|29.30|>": 51829,
1118
+ "<|29.32|>": 51830,
1119
+ "<|29.34|>": 51831,
1120
+ "<|29.36|>": 51832,
1121
+ "<|29.38|>": 51833,
1122
+ "<|29.40|>": 51834,
1123
+ "<|29.42|>": 51835,
1124
+ "<|29.44|>": 51836,
1125
+ "<|29.46|>": 51837,
1126
+ "<|29.48|>": 51838,
1127
+ "<|29.50|>": 51839,
1128
+ "<|29.52|>": 51840,
1129
+ "<|29.54|>": 51841,
1130
+ "<|29.56|>": 51842,
1131
+ "<|29.58|>": 51843,
1132
+ "<|29.60|>": 51844,
1133
+ "<|29.62|>": 51845,
1134
+ "<|29.64|>": 51846,
1135
+ "<|29.66|>": 51847,
1136
+ "<|29.68|>": 51848,
1137
+ "<|29.70|>": 51849,
1138
+ "<|29.72|>": 51850,
1139
+ "<|29.74|>": 51851,
1140
+ "<|29.76|>": 51852,
1141
+ "<|29.78|>": 51853,
1142
+ "<|29.80|>": 51854,
1143
+ "<|29.82|>": 51855,
1144
+ "<|29.84|>": 51856,
1145
+ "<|29.86|>": 51857,
1146
+ "<|29.88|>": 51858,
1147
+ "<|29.90|>": 51859,
1148
+ "<|29.92|>": 51860,
1149
+ "<|29.94|>": 51861,
1150
+ "<|29.96|>": 51862,
1151
+ "<|29.98|>": 51863,
1152
+ "<|3.00|>": 50514,
1153
+ "<|3.02|>": 50515,
1154
+ "<|3.04|>": 50516,
1155
+ "<|3.06|>": 50517,
1156
+ "<|3.08|>": 50518,
1157
+ "<|3.10|>": 50519,
1158
+ "<|3.12|>": 50520,
1159
+ "<|3.14|>": 50521,
1160
+ "<|3.16|>": 50522,
1161
+ "<|3.18|>": 50523,
1162
+ "<|3.20|>": 50524,
1163
+ "<|3.22|>": 50525,
1164
+ "<|3.24|>": 50526,
1165
+ "<|3.26|>": 50527,
1166
+ "<|3.28|>": 50528,
1167
+ "<|3.30|>": 50529,
1168
+ "<|3.32|>": 50530,
1169
+ "<|3.34|>": 50531,
1170
+ "<|3.36|>": 50532,
1171
+ "<|3.38|>": 50533,
1172
+ "<|3.40|>": 50534,
1173
+ "<|3.42|>": 50535,
1174
+ "<|3.44|>": 50536,
1175
+ "<|3.46|>": 50537,
1176
+ "<|3.48|>": 50538,
1177
+ "<|3.50|>": 50539,
1178
+ "<|3.52|>": 50540,
1179
+ "<|3.54|>": 50541,
1180
+ "<|3.56|>": 50542,
1181
+ "<|3.58|>": 50543,
1182
+ "<|3.60|>": 50544,
1183
+ "<|3.62|>": 50545,
1184
+ "<|3.64|>": 50546,
1185
+ "<|3.66|>": 50547,
1186
+ "<|3.68|>": 50548,
1187
+ "<|3.70|>": 50549,
1188
+ "<|3.72|>": 50550,
1189
+ "<|3.74|>": 50551,
1190
+ "<|3.76|>": 50552,
1191
+ "<|3.78|>": 50553,
1192
+ "<|3.80|>": 50554,
1193
+ "<|3.82|>": 50555,
1194
+ "<|3.84|>": 50556,
1195
+ "<|3.86|>": 50557,
1196
+ "<|3.88|>": 50558,
1197
+ "<|3.90|>": 50559,
1198
+ "<|3.92|>": 50560,
1199
+ "<|3.94|>": 50561,
1200
+ "<|3.96|>": 50562,
1201
+ "<|3.98|>": 50563,
1202
+ "<|30.00|>": 51864,
1203
+ "<|4.00|>": 50564,
1204
+ "<|4.02|>": 50565,
1205
+ "<|4.04|>": 50566,
1206
+ "<|4.06|>": 50567,
1207
+ "<|4.08|>": 50568,
1208
+ "<|4.10|>": 50569,
1209
+ "<|4.12|>": 50570,
1210
+ "<|4.14|>": 50571,
1211
+ "<|4.16|>": 50572,
1212
+ "<|4.18|>": 50573,
1213
+ "<|4.20|>": 50574,
1214
+ "<|4.22|>": 50575,
1215
+ "<|4.24|>": 50576,
1216
+ "<|4.26|>": 50577,
1217
+ "<|4.28|>": 50578,
1218
+ "<|4.30|>": 50579,
1219
+ "<|4.32|>": 50580,
1220
+ "<|4.34|>": 50581,
1221
+ "<|4.36|>": 50582,
1222
+ "<|4.38|>": 50583,
1223
+ "<|4.40|>": 50584,
1224
+ "<|4.42|>": 50585,
1225
+ "<|4.44|>": 50586,
1226
+ "<|4.46|>": 50587,
1227
+ "<|4.48|>": 50588,
1228
+ "<|4.50|>": 50589,
1229
+ "<|4.52|>": 50590,
1230
+ "<|4.54|>": 50591,
1231
+ "<|4.56|>": 50592,
1232
+ "<|4.58|>": 50593,
1233
+ "<|4.60|>": 50594,
1234
+ "<|4.62|>": 50595,
1235
+ "<|4.64|>": 50596,
1236
+ "<|4.66|>": 50597,
1237
+ "<|4.68|>": 50598,
1238
+ "<|4.70|>": 50599,
1239
+ "<|4.72|>": 50600,
1240
+ "<|4.74|>": 50601,
1241
+ "<|4.76|>": 50602,
1242
+ "<|4.78|>": 50603,
1243
+ "<|4.80|>": 50604,
1244
+ "<|4.82|>": 50605,
1245
+ "<|4.84|>": 50606,
1246
+ "<|4.86|>": 50607,
1247
+ "<|4.88|>": 50608,
1248
+ "<|4.90|>": 50609,
1249
+ "<|4.92|>": 50610,
1250
+ "<|4.94|>": 50611,
1251
+ "<|4.96|>": 50612,
1252
+ "<|4.98|>": 50613,
1253
+ "<|5.00|>": 50614,
1254
+ "<|5.02|>": 50615,
1255
+ "<|5.04|>": 50616,
1256
+ "<|5.06|>": 50617,
1257
+ "<|5.08|>": 50618,
1258
+ "<|5.10|>": 50619,
1259
+ "<|5.12|>": 50620,
1260
+ "<|5.14|>": 50621,
1261
+ "<|5.16|>": 50622,
1262
+ "<|5.18|>": 50623,
1263
+ "<|5.20|>": 50624,
1264
+ "<|5.22|>": 50625,
1265
+ "<|5.24|>": 50626,
1266
+ "<|5.26|>": 50627,
1267
+ "<|5.28|>": 50628,
1268
+ "<|5.30|>": 50629,
1269
+ "<|5.32|>": 50630,
1270
+ "<|5.34|>": 50631,
1271
+ "<|5.36|>": 50632,
1272
+ "<|5.38|>": 50633,
1273
+ "<|5.40|>": 50634,
1274
+ "<|5.42|>": 50635,
1275
+ "<|5.44|>": 50636,
1276
+ "<|5.46|>": 50637,
1277
+ "<|5.48|>": 50638,
1278
+ "<|5.50|>": 50639,
1279
+ "<|5.52|>": 50640,
1280
+ "<|5.54|>": 50641,
1281
+ "<|5.56|>": 50642,
1282
+ "<|5.58|>": 50643,
1283
+ "<|5.60|>": 50644,
1284
+ "<|5.62|>": 50645,
1285
+ "<|5.64|>": 50646,
1286
+ "<|5.66|>": 50647,
1287
+ "<|5.68|>": 50648,
1288
+ "<|5.70|>": 50649,
1289
+ "<|5.72|>": 50650,
1290
+ "<|5.74|>": 50651,
1291
+ "<|5.76|>": 50652,
1292
+ "<|5.78|>": 50653,
1293
+ "<|5.80|>": 50654,
1294
+ "<|5.82|>": 50655,
1295
+ "<|5.84|>": 50656,
1296
+ "<|5.86|>": 50657,
1297
+ "<|5.88|>": 50658,
1298
+ "<|5.90|>": 50659,
1299
+ "<|5.92|>": 50660,
1300
+ "<|5.94|>": 50661,
1301
+ "<|5.96|>": 50662,
1302
+ "<|5.98|>": 50663,
1303
+ "<|6.00|>": 50664,
1304
+ "<|6.02|>": 50665,
1305
+ "<|6.04|>": 50666,
1306
+ "<|6.06|>": 50667,
1307
+ "<|6.08|>": 50668,
1308
+ "<|6.10|>": 50669,
1309
+ "<|6.12|>": 50670,
1310
+ "<|6.14|>": 50671,
1311
+ "<|6.16|>": 50672,
1312
+ "<|6.18|>": 50673,
1313
+ "<|6.20|>": 50674,
1314
+ "<|6.22|>": 50675,
1315
+ "<|6.24|>": 50676,
1316
+ "<|6.26|>": 50677,
1317
+ "<|6.28|>": 50678,
1318
+ "<|6.30|>": 50679,
1319
+ "<|6.32|>": 50680,
1320
+ "<|6.34|>": 50681,
1321
+ "<|6.36|>": 50682,
1322
+ "<|6.38|>": 50683,
1323
+ "<|6.40|>": 50684,
1324
+ "<|6.42|>": 50685,
1325
+ "<|6.44|>": 50686,
1326
+ "<|6.46|>": 50687,
1327
+ "<|6.48|>": 50688,
1328
+ "<|6.50|>": 50689,
1329
+ "<|6.52|>": 50690,
1330
+ "<|6.54|>": 50691,
1331
+ "<|6.56|>": 50692,
1332
+ "<|6.58|>": 50693,
1333
+ "<|6.60|>": 50694,
1334
+ "<|6.62|>": 50695,
1335
+ "<|6.64|>": 50696,
1336
+ "<|6.66|>": 50697,
1337
+ "<|6.68|>": 50698,
1338
+ "<|6.70|>": 50699,
1339
+ "<|6.72|>": 50700,
1340
+ "<|6.74|>": 50701,
1341
+ "<|6.76|>": 50702,
1342
+ "<|6.78|>": 50703,
1343
+ "<|6.80|>": 50704,
1344
+ "<|6.82|>": 50705,
1345
+ "<|6.84|>": 50706,
1346
+ "<|6.86|>": 50707,
1347
+ "<|6.88|>": 50708,
1348
+ "<|6.90|>": 50709,
1349
+ "<|6.92|>": 50710,
1350
+ "<|6.94|>": 50711,
1351
+ "<|6.96|>": 50712,
1352
+ "<|6.98|>": 50713,
1353
+ "<|7.00|>": 50714,
1354
+ "<|7.02|>": 50715,
1355
+ "<|7.04|>": 50716,
1356
+ "<|7.06|>": 50717,
1357
+ "<|7.08|>": 50718,
1358
+ "<|7.10|>": 50719,
1359
+ "<|7.12|>": 50720,
1360
+ "<|7.14|>": 50721,
1361
+ "<|7.16|>": 50722,
1362
+ "<|7.18|>": 50723,
1363
+ "<|7.20|>": 50724,
1364
+ "<|7.22|>": 50725,
1365
+ "<|7.24|>": 50726,
1366
+ "<|7.26|>": 50727,
1367
+ "<|7.28|>": 50728,
1368
+ "<|7.30|>": 50729,
1369
+ "<|7.32|>": 50730,
1370
+ "<|7.34|>": 50731,
1371
+ "<|7.36|>": 50732,
1372
+ "<|7.38|>": 50733,
1373
+ "<|7.40|>": 50734,
1374
+ "<|7.42|>": 50735,
1375
+ "<|7.44|>": 50736,
1376
+ "<|7.46|>": 50737,
1377
+ "<|7.48|>": 50738,
1378
+ "<|7.50|>": 50739,
1379
+ "<|7.52|>": 50740,
1380
+ "<|7.54|>": 50741,
1381
+ "<|7.56|>": 50742,
1382
+ "<|7.58|>": 50743,
1383
+ "<|7.60|>": 50744,
1384
+ "<|7.62|>": 50745,
1385
+ "<|7.64|>": 50746,
1386
+ "<|7.66|>": 50747,
1387
+ "<|7.68|>": 50748,
1388
+ "<|7.70|>": 50749,
1389
+ "<|7.72|>": 50750,
1390
+ "<|7.74|>": 50751,
1391
+ "<|7.76|>": 50752,
1392
+ "<|7.78|>": 50753,
1393
+ "<|7.80|>": 50754,
1394
+ "<|7.82|>": 50755,
1395
+ "<|7.84|>": 50756,
1396
+ "<|7.86|>": 50757,
1397
+ "<|7.88|>": 50758,
1398
+ "<|7.90|>": 50759,
1399
+ "<|7.92|>": 50760,
1400
+ "<|7.94|>": 50761,
1401
+ "<|7.96|>": 50762,
1402
+ "<|7.98|>": 50763,
1403
+ "<|8.00|>": 50764,
1404
+ "<|8.02|>": 50765,
1405
+ "<|8.04|>": 50766,
1406
+ "<|8.06|>": 50767,
1407
+ "<|8.08|>": 50768,
1408
+ "<|8.10|>": 50769,
1409
+ "<|8.12|>": 50770,
1410
+ "<|8.14|>": 50771,
1411
+ "<|8.16|>": 50772,
1412
+ "<|8.18|>": 50773,
1413
+ "<|8.20|>": 50774,
1414
+ "<|8.22|>": 50775,
1415
+ "<|8.24|>": 50776,
1416
+ "<|8.26|>": 50777,
1417
+ "<|8.28|>": 50778,
1418
+ "<|8.30|>": 50779,
1419
+ "<|8.32|>": 50780,
1420
+ "<|8.34|>": 50781,
1421
+ "<|8.36|>": 50782,
1422
+ "<|8.38|>": 50783,
1423
+ "<|8.40|>": 50784,
1424
+ "<|8.42|>": 50785,
1425
+ "<|8.44|>": 50786,
1426
+ "<|8.46|>": 50787,
1427
+ "<|8.48|>": 50788,
1428
+ "<|8.50|>": 50789,
1429
+ "<|8.52|>": 50790,
1430
+ "<|8.54|>": 50791,
1431
+ "<|8.56|>": 50792,
1432
+ "<|8.58|>": 50793,
1433
+ "<|8.60|>": 50794,
1434
+ "<|8.62|>": 50795,
1435
+ "<|8.64|>": 50796,
1436
+ "<|8.66|>": 50797,
1437
+ "<|8.68|>": 50798,
1438
+ "<|8.70|>": 50799,
1439
+ "<|8.72|>": 50800,
1440
+ "<|8.74|>": 50801,
1441
+ "<|8.76|>": 50802,
1442
+ "<|8.78|>": 50803,
1443
+ "<|8.80|>": 50804,
1444
+ "<|8.82|>": 50805,
1445
+ "<|8.84|>": 50806,
1446
+ "<|8.86|>": 50807,
1447
+ "<|8.88|>": 50808,
1448
+ "<|8.90|>": 50809,
1449
+ "<|8.92|>": 50810,
1450
+ "<|8.94|>": 50811,
1451
+ "<|8.96|>": 50812,
1452
+ "<|8.98|>": 50813,
1453
+ "<|9.00|>": 50814,
1454
+ "<|9.02|>": 50815,
1455
+ "<|9.04|>": 50816,
1456
+ "<|9.06|>": 50817,
1457
+ "<|9.08|>": 50818,
1458
+ "<|9.10|>": 50819,
1459
+ "<|9.12|>": 50820,
1460
+ "<|9.14|>": 50821,
1461
+ "<|9.16|>": 50822,
1462
+ "<|9.18|>": 50823,
1463
+ "<|9.20|>": 50824,
1464
+ "<|9.22|>": 50825,
1465
+ "<|9.24|>": 50826,
1466
+ "<|9.26|>": 50827,
1467
+ "<|9.28|>": 50828,
1468
+ "<|9.30|>": 50829,
1469
+ "<|9.32|>": 50830,
1470
+ "<|9.34|>": 50831,
1471
+ "<|9.36|>": 50832,
1472
+ "<|9.38|>": 50833,
1473
+ "<|9.40|>": 50834,
1474
+ "<|9.42|>": 50835,
1475
+ "<|9.44|>": 50836,
1476
+ "<|9.46|>": 50837,
1477
+ "<|9.48|>": 50838,
1478
+ "<|9.50|>": 50839,
1479
+ "<|9.52|>": 50840,
1480
+ "<|9.54|>": 50841,
1481
+ "<|9.56|>": 50842,
1482
+ "<|9.58|>": 50843,
1483
+ "<|9.60|>": 50844,
1484
+ "<|9.62|>": 50845,
1485
+ "<|9.64|>": 50846,
1486
+ "<|9.66|>": 50847,
1487
+ "<|9.68|>": 50848,
1488
+ "<|9.70|>": 50849,
1489
+ "<|9.72|>": 50850,
1490
+ "<|9.74|>": 50851,
1491
+ "<|9.76|>": 50852,
1492
+ "<|9.78|>": 50853,
1493
+ "<|9.80|>": 50854,
1494
+ "<|9.82|>": 50855,
1495
+ "<|9.84|>": 50856,
1496
+ "<|9.86|>": 50857,
1497
+ "<|9.88|>": 50858,
1498
+ "<|9.90|>": 50859,
1499
+ "<|9.92|>": 50860,
1500
+ "<|9.94|>": 50861,
1501
+ "<|9.96|>": 50862,
1502
+ "<|9.98|>": 50863,
1503
+ "<|af|>": 50327,
1504
+ "<|am|>": 50334,
1505
+ "<|ar|>": 50272,
1506
+ "<|as|>": 50350,
1507
+ "<|az|>": 50304,
1508
+ "<|ba|>": 50355,
1509
+ "<|be|>": 50330,
1510
+ "<|bg|>": 50292,
1511
+ "<|bn|>": 50302,
1512
+ "<|bo|>": 50347,
1513
+ "<|br|>": 50309,
1514
+ "<|bs|>": 50315,
1515
+ "<|ca|>": 50270,
1516
+ "<|cs|>": 50283,
1517
+ "<|cy|>": 50297,
1518
+ "<|da|>": 50285,
1519
+ "<|de|>": 50261,
1520
+ "<|el|>": 50281,
1521
+ "<|en|>": 50259,
1522
+ "<|es|>": 50262,
1523
+ "<|et|>": 50307,
1524
+ "<|eu|>": 50310,
1525
+ "<|fa|>": 50300,
1526
+ "<|fi|>": 50277,
1527
+ "<|fo|>": 50338,
1528
+ "<|fr|>": 50265,
1529
+ "<|gl|>": 50319,
1530
+ "<|gu|>": 50333,
1531
+ "<|haw|>": 50352,
1532
+ "<|ha|>": 50354,
1533
+ "<|he|>": 50279,
1534
+ "<|hi|>": 50276,
1535
+ "<|hr|>": 50291,
1536
+ "<|ht|>": 50339,
1537
+ "<|hu|>": 50286,
1538
+ "<|hy|>": 50312,
1539
+ "<|id|>": 50275,
1540
+ "<|is|>": 50311,
1541
+ "<|it|>": 50274,
1542
+ "<|ja|>": 50266,
1543
+ "<|jw|>": 50356,
1544
+ "<|ka|>": 50329,
1545
+ "<|kk|>": 50316,
1546
+ "<|km|>": 50323,
1547
+ "<|kn|>": 50306,
1548
+ "<|ko|>": 50264,
1549
+ "<|la|>": 50294,
1550
+ "<|lb|>": 50345,
1551
+ "<|ln|>": 50353,
1552
+ "<|lo|>": 50336,
1553
+ "<|lt|>": 50293,
1554
+ "<|lv|>": 50301,
1555
+ "<|mg|>": 50349,
1556
+ "<|mi|>": 50295,
1557
+ "<|mk|>": 50308,
1558
+ "<|ml|>": 50296,
1559
+ "<|mn|>": 50314,
1560
+ "<|mr|>": 50320,
1561
+ "<|ms|>": 50282,
1562
+ "<|mt|>": 50343,
1563
+ "<|my|>": 50346,
1564
+ "<|ne|>": 50313,
1565
+ "<|nl|>": 50271,
1566
+ "<|nn|>": 50342,
1567
+ "<|nocaptions|>": 50362,
1568
+ "<|notimestamps|>": 50363,
1569
+ "<|no|>": 50288,
1570
+ "<|oc|>": 50328,
1571
+ "<|pa|>": 50321,
1572
+ "<|pl|>": 50269,
1573
+ "<|ps|>": 50340,
1574
+ "<|pt|>": 50267,
1575
+ "<|ro|>": 50284,
1576
+ "<|ru|>": 50263,
1577
+ "<|sa|>": 50344,
1578
+ "<|sd|>": 50332,
1579
+ "<|si|>": 50322,
1580
+ "<|sk|>": 50298,
1581
+ "<|sl|>": 50305,
1582
+ "<|sn|>": 50324,
1583
+ "<|so|>": 50326,
1584
+ "<|sq|>": 50317,
1585
+ "<|sr|>": 50303,
1586
+ "<|startoflm|>": 50360,
1587
+ "<|startofprev|>": 50361,
1588
+ "<|startoftranscript|>": 50258,
1589
+ "<|su|>": 50357,
1590
+ "<|sv|>": 50273,
1591
+ "<|sw|>": 50318,
1592
+ "<|ta|>": 50287,
1593
+ "<|te|>": 50299,
1594
+ "<|tg|>": 50331,
1595
+ "<|th|>": 50289,
1596
+ "<|tk|>": 50341,
1597
+ "<|tl|>": 50348,
1598
+ "<|transcribe|>": 50359,
1599
+ "<|translate|>": 50358,
1600
+ "<|tr|>": 50268,
1601
+ "<|tt|>": 50351,
1602
+ "<|uk|>": 50280,
1603
+ "<|ur|>": 50290,
1604
+ "<|uz|>": 50337,
1605
+ "<|vi|>": 50278,
1606
+ "<|yi|>": 50335,
1607
+ "<|yo|>": 50325,
1608
+ "<|zh|>": 50260
1609
+ }
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-base",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "apply_spec_augment": false,
6
+ "architectures": [
7
+ "WhisperForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "begin_suppress_tokens": [
11
+ 220,
12
+ 50257
13
+ ],
14
+ "bos_token_id": 50257,
15
+ "classifier_proj_size": 256,
16
+ "d_model": 512,
17
+ "decoder_attention_heads": 8,
18
+ "decoder_ffn_dim": 2048,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 6,
21
+ "decoder_start_token_id": 50258,
22
+ "dropout": 0.0,
23
+ "encoder_attention_heads": 8,
24
+ "encoder_ffn_dim": 2048,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 6,
27
+ "eos_token_id": 50257,
28
+ "forced_decoder_ids": [
29
+ [
30
+ 1,
31
+ 50278
32
+ ],
33
+ [
34
+ 2,
35
+ 50359
36
+ ],
37
+ [
38
+ 3,
39
+ 50363
40
+ ]
41
+ ],
42
+ "init_std": 0.02,
43
+ "is_encoder_decoder": true,
44
+ "mask_feature_length": 10,
45
+ "mask_feature_min_masks": 0,
46
+ "mask_feature_prob": 0.0,
47
+ "mask_time_length": 10,
48
+ "mask_time_min_masks": 2,
49
+ "mask_time_prob": 0.05,
50
+ "max_length": 448,
51
+ "max_source_positions": 1500,
52
+ "max_target_positions": 448,
53
+ "median_filter_width": 7,
54
+ "model_type": "whisper",
55
+ "num_hidden_layers": 6,
56
+ "num_mel_bins": 80,
57
+ "pad_token_id": 50257,
58
+ "scale_embedding": false,
59
+ "suppress_tokens": [],
60
+ "torch_dtype": "float32",
61
+ "transformers_version": "4.31.0",
62
+ "use_cache": true,
63
+ "use_weighted_layer_sum": false,
64
+ "vocab_size": 51865
65
+ }
generation_config.json ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alignment_heads": [
3
+ [
4
+ 3,
5
+ 1
6
+ ],
7
+ [
8
+ 4,
9
+ 2
10
+ ],
11
+ [
12
+ 4,
13
+ 3
14
+ ],
15
+ [
16
+ 4,
17
+ 7
18
+ ],
19
+ [
20
+ 5,
21
+ 1
22
+ ],
23
+ [
24
+ 5,
25
+ 2
26
+ ],
27
+ [
28
+ 5,
29
+ 4
30
+ ],
31
+ [
32
+ 5,
33
+ 6
34
+ ]
35
+ ],
36
+ "begin_suppress_tokens": [
37
+ 220,
38
+ 50257
39
+ ],
40
+ "bos_token_id": 50257,
41
+ "decoder_start_token_id": 50258,
42
+ "eos_token_id": 50257,
43
+ "forced_decoder_ids": [
44
+ [
45
+ 1,
46
+ 50278
47
+ ],
48
+ [
49
+ 2,
50
+ 50359
51
+ ],
52
+ [
53
+ 3,
54
+ 50363
55
+ ]
56
+ ],
57
+ "is_multilingual": true,
58
+ "lang_to_id": {
59
+ "<|af|>": 50327,
60
+ "<|am|>": 50334,
61
+ "<|ar|>": 50272,
62
+ "<|as|>": 50350,
63
+ "<|az|>": 50304,
64
+ "<|ba|>": 50355,
65
+ "<|be|>": 50330,
66
+ "<|bg|>": 50292,
67
+ "<|bn|>": 50302,
68
+ "<|bo|>": 50347,
69
+ "<|br|>": 50309,
70
+ "<|bs|>": 50315,
71
+ "<|ca|>": 50270,
72
+ "<|cs|>": 50283,
73
+ "<|cy|>": 50297,
74
+ "<|da|>": 50285,
75
+ "<|de|>": 50261,
76
+ "<|el|>": 50281,
77
+ "<|en|>": 50259,
78
+ "<|es|>": 50262,
79
+ "<|et|>": 50307,
80
+ "<|eu|>": 50310,
81
+ "<|fa|>": 50300,
82
+ "<|fi|>": 50277,
83
+ "<|fo|>": 50338,
84
+ "<|fr|>": 50265,
85
+ "<|gl|>": 50319,
86
+ "<|gu|>": 50333,
87
+ "<|haw|>": 50352,
88
+ "<|ha|>": 50354,
89
+ "<|he|>": 50279,
90
+ "<|hi|>": 50276,
91
+ "<|hr|>": 50291,
92
+ "<|ht|>": 50339,
93
+ "<|hu|>": 50286,
94
+ "<|hy|>": 50312,
95
+ "<|id|>": 50275,
96
+ "<|is|>": 50311,
97
+ "<|it|>": 50274,
98
+ "<|ja|>": 50266,
99
+ "<|jw|>": 50356,
100
+ "<|ka|>": 50329,
101
+ "<|kk|>": 50316,
102
+ "<|km|>": 50323,
103
+ "<|kn|>": 50306,
104
+ "<|ko|>": 50264,
105
+ "<|la|>": 50294,
106
+ "<|lb|>": 50345,
107
+ "<|ln|>": 50353,
108
+ "<|lo|>": 50336,
109
+ "<|lt|>": 50293,
110
+ "<|lv|>": 50301,
111
+ "<|mg|>": 50349,
112
+ "<|mi|>": 50295,
113
+ "<|mk|>": 50308,
114
+ "<|ml|>": 50296,
115
+ "<|mn|>": 50314,
116
+ "<|mr|>": 50320,
117
+ "<|ms|>": 50282,
118
+ "<|mt|>": 50343,
119
+ "<|my|>": 50346,
120
+ "<|ne|>": 50313,
121
+ "<|nl|>": 50271,
122
+ "<|nn|>": 50342,
123
+ "<|no|>": 50288,
124
+ "<|oc|>": 50328,
125
+ "<|pa|>": 50321,
126
+ "<|pl|>": 50269,
127
+ "<|ps|>": 50340,
128
+ "<|pt|>": 50267,
129
+ "<|ro|>": 50284,
130
+ "<|ru|>": 50263,
131
+ "<|sa|>": 50344,
132
+ "<|sd|>": 50332,
133
+ "<|si|>": 50322,
134
+ "<|sk|>": 50298,
135
+ "<|sl|>": 50305,
136
+ "<|sn|>": 50324,
137
+ "<|so|>": 50326,
138
+ "<|sq|>": 50317,
139
+ "<|sr|>": 50303,
140
+ "<|su|>": 50357,
141
+ "<|sv|>": 50273,
142
+ "<|sw|>": 50318,
143
+ "<|ta|>": 50287,
144
+ "<|te|>": 50299,
145
+ "<|tg|>": 50331,
146
+ "<|th|>": 50289,
147
+ "<|tk|>": 50341,
148
+ "<|tl|>": 50348,
149
+ "<|tr|>": 50268,
150
+ "<|tt|>": 50351,
151
+ "<|uk|>": 50280,
152
+ "<|ur|>": 50290,
153
+ "<|uz|>": 50337,
154
+ "<|vi|>": 50278,
155
+ "<|yi|>": 50335,
156
+ "<|yo|>": 50325,
157
+ "<|zh|>": 50260
158
+ },
159
+ "max_initial_timestamp_index": 1,
160
+ "max_length": 448,
161
+ "no_timestamps_token_id": 50363,
162
+ "pad_token_id": 50257,
163
+ "return_timestamps": false,
164
+ "suppress_tokens": [],
165
+ "task_to_id": {
166
+ "transcribe": 50359,
167
+ "translate": 50358
168
+ },
169
+ "transformers_version": "4.31.0"
170
+ }
log/events.out.tfevents.1696232203.ai-gpu-1.476619.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c3987f47adcb9b760430237f253d80a41f7f7b49a09f5562355cc71c06ee83d
3
+ size 4802
log/events.out.tfevents.1696232280.ai-gpu-1.478982.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6563b3927617621f0a93c5a6829f5e0f1af4b074987c3a2eb916c23d060444ec
3
+ size 11079
log/events.out.tfevents.1696302369.ai-gpu-1.541775.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e318608ee39fa1960f1e8388f75c478b7f7d32d2bb8adca1fe63b13db5c1ef0
3
+ size 56581
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa06c0e45de5416e773b60cb58e09bdaa82fa4494ee79344924f2aca488f08f6
3
+ size 290458785
special_tokens_map.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": "<|endoftext|>",
126
+ "unk_token": {
127
+ "content": "<|endoftext|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ }
133
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 448,
23
+ "pad_token": null,
24
+ "processor_class": "WhisperProcessor",
25
+ "return_attention_mask": false,
26
+ "tokenizer_class": "WhisperTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,2065 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 25.731181077193543,
3
+ "best_model_checkpoint": "/workspace/whisper/pretrain_base/checkpoint-20000",
4
+ "epoch": 9.391727493917275,
5
+ "global_step": 32880,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.03,
12
+ "learning_rate": 2.425e-05,
13
+ "loss": 1.3775,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.06,
18
+ "learning_rate": 4.9250000000000004e-05,
19
+ "loss": 0.7466,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.09,
24
+ "learning_rate": 7.425e-05,
25
+ "loss": 0.7189,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.12,
30
+ "learning_rate": 9.925000000000001e-05,
31
+ "loss": 0.7172,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.15,
36
+ "learning_rate": 0.00012425,
37
+ "loss": 0.73,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.18,
42
+ "learning_rate": 0.00014925,
43
+ "loss": 0.7847,
44
+ "step": 600
45
+ },
46
+ {
47
+ "epoch": 0.21,
48
+ "learning_rate": 0.00017424999999999998,
49
+ "loss": 0.7678,
50
+ "step": 700
51
+ },
52
+ {
53
+ "epoch": 0.24,
54
+ "learning_rate": 0.00019925000000000002,
55
+ "loss": 0.794,
56
+ "step": 800
57
+ },
58
+ {
59
+ "epoch": 0.27,
60
+ "learning_rate": 0.00022425,
61
+ "loss": 0.8324,
62
+ "step": 900
63
+ },
64
+ {
65
+ "epoch": 0.3,
66
+ "learning_rate": 0.00024925,
67
+ "loss": 0.8312,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 0.33,
72
+ "learning_rate": 0.00027425,
73
+ "loss": 0.8452,
74
+ "step": 1100
75
+ },
76
+ {
77
+ "epoch": 0.36,
78
+ "learning_rate": 0.00029925000000000004,
79
+ "loss": 0.8678,
80
+ "step": 1200
81
+ },
82
+ {
83
+ "epoch": 0.4,
84
+ "learning_rate": 0.00032425,
85
+ "loss": 0.8898,
86
+ "step": 1300
87
+ },
88
+ {
89
+ "epoch": 0.43,
90
+ "learning_rate": 0.00034925,
91
+ "loss": 0.8944,
92
+ "step": 1400
93
+ },
94
+ {
95
+ "epoch": 0.46,
96
+ "learning_rate": 0.00037425,
97
+ "loss": 0.9126,
98
+ "step": 1500
99
+ },
100
+ {
101
+ "epoch": 0.49,
102
+ "learning_rate": 0.00039925000000000003,
103
+ "loss": 0.9184,
104
+ "step": 1600
105
+ },
106
+ {
107
+ "epoch": 0.52,
108
+ "learning_rate": 0.00042425000000000004,
109
+ "loss": 0.9372,
110
+ "step": 1700
111
+ },
112
+ {
113
+ "epoch": 0.55,
114
+ "learning_rate": 0.00044925,
115
+ "loss": 0.9781,
116
+ "step": 1800
117
+ },
118
+ {
119
+ "epoch": 0.58,
120
+ "learning_rate": 0.00047425,
121
+ "loss": 0.9808,
122
+ "step": 1900
123
+ },
124
+ {
125
+ "epoch": 0.61,
126
+ "learning_rate": 0.00049925,
127
+ "loss": 1.0286,
128
+ "step": 2000
129
+ },
130
+ {
131
+ "epoch": 0.03,
132
+ "learning_rate": 0.0004984617875647668,
133
+ "loss": 0.9408,
134
+ "step": 2100
135
+ },
136
+ {
137
+ "epoch": 0.06,
138
+ "learning_rate": 0.0004968588082901555,
139
+ "loss": 0.917,
140
+ "step": 2200
141
+ },
142
+ {
143
+ "epoch": 0.09,
144
+ "learning_rate": 0.0004952396373056995,
145
+ "loss": 0.9306,
146
+ "step": 2300
147
+ },
148
+ {
149
+ "epoch": 0.12,
150
+ "learning_rate": 0.0004936204663212435,
151
+ "loss": 0.9656,
152
+ "step": 2400
153
+ },
154
+ {
155
+ "epoch": 0.15,
156
+ "learning_rate": 0.0004920012953367875,
157
+ "loss": 0.9078,
158
+ "step": 2500
159
+ },
160
+ {
161
+ "epoch": 0.18,
162
+ "learning_rate": 0.0004903821243523316,
163
+ "loss": 0.8968,
164
+ "step": 2600
165
+ },
166
+ {
167
+ "epoch": 0.21,
168
+ "learning_rate": 0.0004887629533678756,
169
+ "loss": 0.8644,
170
+ "step": 2700
171
+ },
172
+ {
173
+ "epoch": 0.24,
174
+ "learning_rate": 0.0004871437823834197,
175
+ "loss": 0.9126,
176
+ "step": 2800
177
+ },
178
+ {
179
+ "epoch": 0.27,
180
+ "learning_rate": 0.0004855246113989638,
181
+ "loss": 0.8631,
182
+ "step": 2900
183
+ },
184
+ {
185
+ "epoch": 0.3,
186
+ "learning_rate": 0.0004839054404145078,
187
+ "loss": 0.8724,
188
+ "step": 3000
189
+ },
190
+ {
191
+ "epoch": 0.33,
192
+ "learning_rate": 0.00048228626943005185,
193
+ "loss": 0.8416,
194
+ "step": 3100
195
+ },
196
+ {
197
+ "epoch": 0.36,
198
+ "learning_rate": 0.00048066709844559586,
199
+ "loss": 0.8013,
200
+ "step": 3200
201
+ },
202
+ {
203
+ "epoch": 0.4,
204
+ "learning_rate": 0.0004790479274611399,
205
+ "loss": 0.7938,
206
+ "step": 3300
207
+ },
208
+ {
209
+ "epoch": 0.43,
210
+ "learning_rate": 0.00047742875647668393,
211
+ "loss": 0.8173,
212
+ "step": 3400
213
+ },
214
+ {
215
+ "epoch": 0.46,
216
+ "learning_rate": 0.000475809585492228,
217
+ "loss": 0.8158,
218
+ "step": 3500
219
+ },
220
+ {
221
+ "epoch": 0.49,
222
+ "learning_rate": 0.000474190414507772,
223
+ "loss": 0.7718,
224
+ "step": 3600
225
+ },
226
+ {
227
+ "epoch": 0.52,
228
+ "learning_rate": 0.0004725712435233161,
229
+ "loss": 0.7731,
230
+ "step": 3700
231
+ },
232
+ {
233
+ "epoch": 0.55,
234
+ "learning_rate": 0.00047095207253886013,
235
+ "loss": 0.7525,
236
+ "step": 3800
237
+ },
238
+ {
239
+ "epoch": 0.58,
240
+ "learning_rate": 0.00046933290155440414,
241
+ "loss": 0.7354,
242
+ "step": 3900
243
+ },
244
+ {
245
+ "epoch": 0.61,
246
+ "learning_rate": 0.0004677137305699482,
247
+ "loss": 0.7298,
248
+ "step": 4000
249
+ },
250
+ {
251
+ "epoch": 0.61,
252
+ "eval_loss": 0.7294211983680725,
253
+ "eval_runtime": 497.9031,
254
+ "eval_samples_per_second": 0.532,
255
+ "eval_steps_per_second": 0.034,
256
+ "eval_wer": 62.55393958766182,
257
+ "step": 4000
258
+ },
259
+ {
260
+ "epoch": 0.64,
261
+ "learning_rate": 0.0004660945595854922,
262
+ "loss": 0.7686,
263
+ "step": 4100
264
+ },
265
+ {
266
+ "epoch": 0.67,
267
+ "learning_rate": 0.0004644753886010363,
268
+ "loss": 0.7231,
269
+ "step": 4200
270
+ },
271
+ {
272
+ "epoch": 0.7,
273
+ "learning_rate": 0.0004628562176165803,
274
+ "loss": 0.7244,
275
+ "step": 4300
276
+ },
277
+ {
278
+ "epoch": 0.73,
279
+ "learning_rate": 0.00046123704663212435,
280
+ "loss": 0.7147,
281
+ "step": 4400
282
+ },
283
+ {
284
+ "epoch": 0.76,
285
+ "learning_rate": 0.00045963406735751296,
286
+ "loss": 0.7183,
287
+ "step": 4500
288
+ },
289
+ {
290
+ "epoch": 0.79,
291
+ "learning_rate": 0.00045801489637305697,
292
+ "loss": 0.6829,
293
+ "step": 4600
294
+ },
295
+ {
296
+ "epoch": 0.82,
297
+ "learning_rate": 0.00045641191709844557,
298
+ "loss": 0.6598,
299
+ "step": 4700
300
+ },
301
+ {
302
+ "epoch": 0.85,
303
+ "learning_rate": 0.00045479274611398963,
304
+ "loss": 0.6828,
305
+ "step": 4800
306
+ },
307
+ {
308
+ "epoch": 0.88,
309
+ "learning_rate": 0.00045317357512953364,
310
+ "loss": 0.682,
311
+ "step": 4900
312
+ },
313
+ {
314
+ "epoch": 0.91,
315
+ "learning_rate": 0.00045155440414507776,
316
+ "loss": 0.6589,
317
+ "step": 5000
318
+ },
319
+ {
320
+ "epoch": 0.94,
321
+ "learning_rate": 0.00044993523316062177,
322
+ "loss": 0.6531,
323
+ "step": 5100
324
+ },
325
+ {
326
+ "epoch": 0.97,
327
+ "learning_rate": 0.00044831606217616584,
328
+ "loss": 0.6384,
329
+ "step": 5200
330
+ },
331
+ {
332
+ "epoch": 1.0,
333
+ "learning_rate": 0.00044669689119170985,
334
+ "loss": 0.6346,
335
+ "step": 5300
336
+ },
337
+ {
338
+ "epoch": 1.03,
339
+ "learning_rate": 0.0004450777202072539,
340
+ "loss": 0.558,
341
+ "step": 5400
342
+ },
343
+ {
344
+ "epoch": 1.06,
345
+ "learning_rate": 0.0004434585492227979,
346
+ "loss": 0.5664,
347
+ "step": 5500
348
+ },
349
+ {
350
+ "epoch": 1.09,
351
+ "learning_rate": 0.000441839378238342,
352
+ "loss": 0.5653,
353
+ "step": 5600
354
+ },
355
+ {
356
+ "epoch": 1.13,
357
+ "learning_rate": 0.000440220207253886,
358
+ "loss": 0.5293,
359
+ "step": 5700
360
+ },
361
+ {
362
+ "epoch": 1.16,
363
+ "learning_rate": 0.00043860103626943006,
364
+ "loss": 0.5908,
365
+ "step": 5800
366
+ },
367
+ {
368
+ "epoch": 1.19,
369
+ "learning_rate": 0.00043698186528497407,
370
+ "loss": 0.5657,
371
+ "step": 5900
372
+ },
373
+ {
374
+ "epoch": 1.22,
375
+ "learning_rate": 0.0004353626943005182,
376
+ "loss": 0.5672,
377
+ "step": 6000
378
+ },
379
+ {
380
+ "epoch": 1.25,
381
+ "learning_rate": 0.0004337435233160622,
382
+ "loss": 0.5844,
383
+ "step": 6100
384
+ },
385
+ {
386
+ "epoch": 1.28,
387
+ "learning_rate": 0.00043212435233160626,
388
+ "loss": 0.549,
389
+ "step": 6200
390
+ },
391
+ {
392
+ "epoch": 1.31,
393
+ "learning_rate": 0.00043050518134715027,
394
+ "loss": 0.556,
395
+ "step": 6300
396
+ },
397
+ {
398
+ "epoch": 1.34,
399
+ "learning_rate": 0.00042888601036269433,
400
+ "loss": 0.5631,
401
+ "step": 6400
402
+ },
403
+ {
404
+ "epoch": 1.37,
405
+ "learning_rate": 0.00042726683937823834,
406
+ "loss": 0.5604,
407
+ "step": 6500
408
+ },
409
+ {
410
+ "epoch": 1.4,
411
+ "learning_rate": 0.0004256476683937824,
412
+ "loss": 0.5169,
413
+ "step": 6600
414
+ },
415
+ {
416
+ "epoch": 1.43,
417
+ "learning_rate": 0.0004240284974093264,
418
+ "loss": 0.5497,
419
+ "step": 6700
420
+ },
421
+ {
422
+ "epoch": 1.46,
423
+ "learning_rate": 0.0004224093264248705,
424
+ "loss": 0.5315,
425
+ "step": 6800
426
+ },
427
+ {
428
+ "epoch": 1.49,
429
+ "learning_rate": 0.0004207901554404145,
430
+ "loss": 0.5453,
431
+ "step": 6900
432
+ },
433
+ {
434
+ "epoch": 1.52,
435
+ "learning_rate": 0.0004191709844559586,
436
+ "loss": 0.5372,
437
+ "step": 7000
438
+ },
439
+ {
440
+ "epoch": 1.55,
441
+ "learning_rate": 0.0004175518134715026,
442
+ "loss": 0.5304,
443
+ "step": 7100
444
+ },
445
+ {
446
+ "epoch": 1.58,
447
+ "learning_rate": 0.0004159326424870467,
448
+ "loss": 0.5226,
449
+ "step": 7200
450
+ },
451
+ {
452
+ "epoch": 1.61,
453
+ "learning_rate": 0.0004143134715025907,
454
+ "loss": 0.5347,
455
+ "step": 7300
456
+ },
457
+ {
458
+ "epoch": 1.64,
459
+ "learning_rate": 0.0004126943005181347,
460
+ "loss": 0.5393,
461
+ "step": 7400
462
+ },
463
+ {
464
+ "epoch": 1.67,
465
+ "learning_rate": 0.00041107512953367876,
466
+ "loss": 0.505,
467
+ "step": 7500
468
+ },
469
+ {
470
+ "epoch": 1.7,
471
+ "learning_rate": 0.00040945595854922277,
472
+ "loss": 0.5213,
473
+ "step": 7600
474
+ },
475
+ {
476
+ "epoch": 1.73,
477
+ "learning_rate": 0.00040783678756476684,
478
+ "loss": 0.5188,
479
+ "step": 7700
480
+ },
481
+ {
482
+ "epoch": 1.76,
483
+ "learning_rate": 0.00040621761658031085,
484
+ "loss": 0.5056,
485
+ "step": 7800
486
+ },
487
+ {
488
+ "epoch": 1.79,
489
+ "learning_rate": 0.00040459844559585496,
490
+ "loss": 0.5106,
491
+ "step": 7900
492
+ },
493
+ {
494
+ "epoch": 1.82,
495
+ "learning_rate": 0.000402979274611399,
496
+ "loss": 0.5348,
497
+ "step": 8000
498
+ },
499
+ {
500
+ "epoch": 1.82,
501
+ "eval_loss": 0.5500301718711853,
502
+ "eval_runtime": 455.7092,
503
+ "eval_samples_per_second": 0.582,
504
+ "eval_steps_per_second": 0.037,
505
+ "eval_wer": 46.73166054019498,
506
+ "step": 8000
507
+ },
508
+ {
509
+ "epoch": 1.86,
510
+ "learning_rate": 0.00040136010362694304,
511
+ "loss": 0.5169,
512
+ "step": 8100
513
+ },
514
+ {
515
+ "epoch": 1.89,
516
+ "learning_rate": 0.00039974093264248705,
517
+ "loss": 0.5017,
518
+ "step": 8200
519
+ },
520
+ {
521
+ "epoch": 1.92,
522
+ "learning_rate": 0.0003981217616580311,
523
+ "loss": 0.5438,
524
+ "step": 8300
525
+ },
526
+ {
527
+ "epoch": 1.95,
528
+ "learning_rate": 0.0003965025906735751,
529
+ "loss": 0.4846,
530
+ "step": 8400
531
+ },
532
+ {
533
+ "epoch": 1.98,
534
+ "learning_rate": 0.0003948834196891192,
535
+ "loss": 0.5027,
536
+ "step": 8500
537
+ },
538
+ {
539
+ "epoch": 2.01,
540
+ "learning_rate": 0.0003932642487046632,
541
+ "loss": 0.4913,
542
+ "step": 8600
543
+ },
544
+ {
545
+ "epoch": 2.04,
546
+ "learning_rate": 0.0003916612694300518,
547
+ "loss": 0.393,
548
+ "step": 8700
549
+ },
550
+ {
551
+ "epoch": 2.07,
552
+ "learning_rate": 0.00039004209844559586,
553
+ "loss": 0.3817,
554
+ "step": 8800
555
+ },
556
+ {
557
+ "epoch": 2.1,
558
+ "learning_rate": 0.00038842292746113987,
559
+ "loss": 0.3933,
560
+ "step": 8900
561
+ },
562
+ {
563
+ "epoch": 2.13,
564
+ "learning_rate": 0.00038680375647668394,
565
+ "loss": 0.4169,
566
+ "step": 9000
567
+ },
568
+ {
569
+ "epoch": 2.16,
570
+ "learning_rate": 0.000385184585492228,
571
+ "loss": 0.4097,
572
+ "step": 9100
573
+ },
574
+ {
575
+ "epoch": 2.19,
576
+ "learning_rate": 0.00038356541450777206,
577
+ "loss": 0.4028,
578
+ "step": 9200
579
+ },
580
+ {
581
+ "epoch": 2.22,
582
+ "learning_rate": 0.0003819462435233161,
583
+ "loss": 0.409,
584
+ "step": 9300
585
+ },
586
+ {
587
+ "epoch": 2.25,
588
+ "learning_rate": 0.00038032707253886014,
589
+ "loss": 0.4108,
590
+ "step": 9400
591
+ },
592
+ {
593
+ "epoch": 2.28,
594
+ "learning_rate": 0.00037870790155440415,
595
+ "loss": 0.4117,
596
+ "step": 9500
597
+ },
598
+ {
599
+ "epoch": 2.31,
600
+ "learning_rate": 0.0003770887305699482,
601
+ "loss": 0.3998,
602
+ "step": 9600
603
+ },
604
+ {
605
+ "epoch": 2.34,
606
+ "learning_rate": 0.0003754695595854922,
607
+ "loss": 0.4065,
608
+ "step": 9700
609
+ },
610
+ {
611
+ "epoch": 2.37,
612
+ "learning_rate": 0.0003738503886010363,
613
+ "loss": 0.4243,
614
+ "step": 9800
615
+ },
616
+ {
617
+ "epoch": 2.4,
618
+ "learning_rate": 0.0003722312176165803,
619
+ "loss": 0.4074,
620
+ "step": 9900
621
+ },
622
+ {
623
+ "epoch": 2.43,
624
+ "learning_rate": 0.00037061204663212436,
625
+ "loss": 0.4109,
626
+ "step": 10000
627
+ },
628
+ {
629
+ "epoch": 2.46,
630
+ "learning_rate": 0.0003689928756476684,
631
+ "loss": 0.4029,
632
+ "step": 10100
633
+ },
634
+ {
635
+ "epoch": 2.49,
636
+ "learning_rate": 0.0003673737046632125,
637
+ "loss": 0.388,
638
+ "step": 10200
639
+ },
640
+ {
641
+ "epoch": 2.52,
642
+ "learning_rate": 0.0003657545336787565,
643
+ "loss": 0.4309,
644
+ "step": 10300
645
+ },
646
+ {
647
+ "epoch": 2.55,
648
+ "learning_rate": 0.0003641353626943005,
649
+ "loss": 0.4171,
650
+ "step": 10400
651
+ },
652
+ {
653
+ "epoch": 2.59,
654
+ "learning_rate": 0.00036251619170984457,
655
+ "loss": 0.4115,
656
+ "step": 10500
657
+ },
658
+ {
659
+ "epoch": 2.62,
660
+ "learning_rate": 0.0003608970207253886,
661
+ "loss": 0.4077,
662
+ "step": 10600
663
+ },
664
+ {
665
+ "epoch": 2.65,
666
+ "learning_rate": 0.00035927784974093264,
667
+ "loss": 0.3923,
668
+ "step": 10700
669
+ },
670
+ {
671
+ "epoch": 2.68,
672
+ "learning_rate": 0.00035765867875647665,
673
+ "loss": 0.4002,
674
+ "step": 10800
675
+ },
676
+ {
677
+ "epoch": 2.71,
678
+ "learning_rate": 0.0003560395077720207,
679
+ "loss": 0.4078,
680
+ "step": 10900
681
+ },
682
+ {
683
+ "epoch": 2.74,
684
+ "learning_rate": 0.0003544203367875648,
685
+ "loss": 0.4,
686
+ "step": 11000
687
+ },
688
+ {
689
+ "epoch": 2.77,
690
+ "learning_rate": 0.00035280116580310884,
691
+ "loss": 0.401,
692
+ "step": 11100
693
+ },
694
+ {
695
+ "epoch": 2.8,
696
+ "learning_rate": 0.00035118199481865285,
697
+ "loss": 0.3729,
698
+ "step": 11200
699
+ },
700
+ {
701
+ "epoch": 2.83,
702
+ "learning_rate": 0.0003495628238341969,
703
+ "loss": 0.402,
704
+ "step": 11300
705
+ },
706
+ {
707
+ "epoch": 2.86,
708
+ "learning_rate": 0.00034794365284974093,
709
+ "loss": 0.3933,
710
+ "step": 11400
711
+ },
712
+ {
713
+ "epoch": 2.89,
714
+ "learning_rate": 0.000346324481865285,
715
+ "loss": 0.397,
716
+ "step": 11500
717
+ },
718
+ {
719
+ "epoch": 2.92,
720
+ "learning_rate": 0.000344705310880829,
721
+ "loss": 0.3834,
722
+ "step": 11600
723
+ },
724
+ {
725
+ "epoch": 2.95,
726
+ "learning_rate": 0.00034308613989637307,
727
+ "loss": 0.3744,
728
+ "step": 11700
729
+ },
730
+ {
731
+ "epoch": 2.98,
732
+ "learning_rate": 0.0003414669689119171,
733
+ "loss": 0.3905,
734
+ "step": 11800
735
+ },
736
+ {
737
+ "epoch": 3.01,
738
+ "learning_rate": 0.00033984779792746114,
739
+ "loss": 0.3626,
740
+ "step": 11900
741
+ },
742
+ {
743
+ "epoch": 3.04,
744
+ "learning_rate": 0.0003382286269430052,
745
+ "loss": 0.2828,
746
+ "step": 12000
747
+ },
748
+ {
749
+ "epoch": 3.04,
750
+ "eval_loss": 0.5047640800476074,
751
+ "eval_runtime": 460.4394,
752
+ "eval_samples_per_second": 0.576,
753
+ "eval_steps_per_second": 0.037,
754
+ "eval_wer": 34.3455330030366,
755
+ "step": 12000
756
+ },
757
+ {
758
+ "epoch": 3.07,
759
+ "learning_rate": 0.00033660945595854927,
760
+ "loss": 0.2933,
761
+ "step": 12100
762
+ },
763
+ {
764
+ "epoch": 3.1,
765
+ "learning_rate": 0.0003349902849740933,
766
+ "loss": 0.2943,
767
+ "step": 12200
768
+ },
769
+ {
770
+ "epoch": 3.13,
771
+ "learning_rate": 0.00033337111398963734,
772
+ "loss": 0.2911,
773
+ "step": 12300
774
+ },
775
+ {
776
+ "epoch": 3.16,
777
+ "learning_rate": 0.00033175194300518135,
778
+ "loss": 0.2928,
779
+ "step": 12400
780
+ },
781
+ {
782
+ "epoch": 3.19,
783
+ "learning_rate": 0.0003301327720207254,
784
+ "loss": 0.2983,
785
+ "step": 12500
786
+ },
787
+ {
788
+ "epoch": 3.22,
789
+ "learning_rate": 0.0003285136010362694,
790
+ "loss": 0.2919,
791
+ "step": 12600
792
+ },
793
+ {
794
+ "epoch": 3.25,
795
+ "learning_rate": 0.0003268944300518135,
796
+ "loss": 0.3078,
797
+ "step": 12700
798
+ },
799
+ {
800
+ "epoch": 3.28,
801
+ "learning_rate": 0.0003252752590673575,
802
+ "loss": 0.3201,
803
+ "step": 12800
804
+ },
805
+ {
806
+ "epoch": 3.32,
807
+ "learning_rate": 0.00032365608808290156,
808
+ "loss": 0.3012,
809
+ "step": 12900
810
+ },
811
+ {
812
+ "epoch": 3.35,
813
+ "learning_rate": 0.0003220369170984456,
814
+ "loss": 0.312,
815
+ "step": 13000
816
+ },
817
+ {
818
+ "epoch": 3.38,
819
+ "learning_rate": 0.00032041774611398963,
820
+ "loss": 0.3063,
821
+ "step": 13100
822
+ },
823
+ {
824
+ "epoch": 3.41,
825
+ "learning_rate": 0.0003187985751295337,
826
+ "loss": 0.3139,
827
+ "step": 13200
828
+ },
829
+ {
830
+ "epoch": 3.44,
831
+ "learning_rate": 0.0003171794041450777,
832
+ "loss": 0.2951,
833
+ "step": 13300
834
+ },
835
+ {
836
+ "epoch": 3.47,
837
+ "learning_rate": 0.00031556023316062177,
838
+ "loss": 0.2936,
839
+ "step": 13400
840
+ },
841
+ {
842
+ "epoch": 3.5,
843
+ "learning_rate": 0.0003139410621761658,
844
+ "loss": 0.3005,
845
+ "step": 13500
846
+ },
847
+ {
848
+ "epoch": 3.53,
849
+ "learning_rate": 0.00031232189119170985,
850
+ "loss": 0.3074,
851
+ "step": 13600
852
+ },
853
+ {
854
+ "epoch": 3.56,
855
+ "learning_rate": 0.00031070272020725386,
856
+ "loss": 0.3124,
857
+ "step": 13700
858
+ },
859
+ {
860
+ "epoch": 3.59,
861
+ "learning_rate": 0.0003090835492227979,
862
+ "loss": 0.3213,
863
+ "step": 13800
864
+ },
865
+ {
866
+ "epoch": 3.62,
867
+ "learning_rate": 0.0003074805699481865,
868
+ "loss": 0.305,
869
+ "step": 13900
870
+ },
871
+ {
872
+ "epoch": 3.65,
873
+ "learning_rate": 0.00030586139896373053,
874
+ "loss": 0.3053,
875
+ "step": 14000
876
+ },
877
+ {
878
+ "epoch": 3.68,
879
+ "learning_rate": 0.00030424222797927465,
880
+ "loss": 0.2989,
881
+ "step": 14100
882
+ },
883
+ {
884
+ "epoch": 3.71,
885
+ "learning_rate": 0.00030262305699481866,
886
+ "loss": 0.3046,
887
+ "step": 14200
888
+ },
889
+ {
890
+ "epoch": 3.74,
891
+ "learning_rate": 0.0003010038860103627,
892
+ "loss": 0.2977,
893
+ "step": 14300
894
+ },
895
+ {
896
+ "epoch": 3.77,
897
+ "learning_rate": 0.00029938471502590673,
898
+ "loss": 0.3002,
899
+ "step": 14400
900
+ },
901
+ {
902
+ "epoch": 3.8,
903
+ "learning_rate": 0.0002977655440414508,
904
+ "loss": 0.318,
905
+ "step": 14500
906
+ },
907
+ {
908
+ "epoch": 3.83,
909
+ "learning_rate": 0.0002961463730569948,
910
+ "loss": 0.3133,
911
+ "step": 14600
912
+ },
913
+ {
914
+ "epoch": 3.86,
915
+ "learning_rate": 0.00029452720207253887,
916
+ "loss": 0.3196,
917
+ "step": 14700
918
+ },
919
+ {
920
+ "epoch": 3.89,
921
+ "learning_rate": 0.0002929080310880829,
922
+ "loss": 0.3131,
923
+ "step": 14800
924
+ },
925
+ {
926
+ "epoch": 3.92,
927
+ "learning_rate": 0.00029128886010362695,
928
+ "loss": 0.3102,
929
+ "step": 14900
930
+ },
931
+ {
932
+ "epoch": 3.95,
933
+ "learning_rate": 0.00028966968911917095,
934
+ "loss": 0.3007,
935
+ "step": 15000
936
+ },
937
+ {
938
+ "epoch": 3.98,
939
+ "learning_rate": 0.0002880505181347151,
940
+ "loss": 0.2975,
941
+ "step": 15100
942
+ },
943
+ {
944
+ "epoch": 4.01,
945
+ "learning_rate": 0.0002864313471502591,
946
+ "loss": 0.2461,
947
+ "step": 15200
948
+ },
949
+ {
950
+ "epoch": 4.05,
951
+ "learning_rate": 0.00028481217616580315,
952
+ "loss": 0.1983,
953
+ "step": 15300
954
+ },
955
+ {
956
+ "epoch": 4.08,
957
+ "learning_rate": 0.00028319300518134716,
958
+ "loss": 0.2076,
959
+ "step": 15400
960
+ },
961
+ {
962
+ "epoch": 4.11,
963
+ "learning_rate": 0.0002815738341968912,
964
+ "loss": 0.2054,
965
+ "step": 15500
966
+ },
967
+ {
968
+ "epoch": 4.14,
969
+ "learning_rate": 0.00027995466321243523,
970
+ "loss": 0.214,
971
+ "step": 15600
972
+ },
973
+ {
974
+ "epoch": 4.17,
975
+ "learning_rate": 0.0002783354922279793,
976
+ "loss": 0.2259,
977
+ "step": 15700
978
+ },
979
+ {
980
+ "epoch": 4.2,
981
+ "learning_rate": 0.0002767163212435233,
982
+ "loss": 0.2121,
983
+ "step": 15800
984
+ },
985
+ {
986
+ "epoch": 4.23,
987
+ "learning_rate": 0.00027509715025906737,
988
+ "loss": 0.2172,
989
+ "step": 15900
990
+ },
991
+ {
992
+ "epoch": 4.26,
993
+ "learning_rate": 0.0002734779792746114,
994
+ "loss": 0.2182,
995
+ "step": 16000
996
+ },
997
+ {
998
+ "epoch": 4.26,
999
+ "eval_loss": 0.47591984272003174,
1000
+ "eval_runtime": 430.927,
1001
+ "eval_samples_per_second": 0.615,
1002
+ "eval_steps_per_second": 0.039,
1003
+ "eval_wer": 27.457247882371743,
1004
+ "step": 16000
1005
+ },
1006
+ {
1007
+ "epoch": 4.29,
1008
+ "learning_rate": 0.0002718588082901555,
1009
+ "loss": 0.213,
1010
+ "step": 16100
1011
+ },
1012
+ {
1013
+ "epoch": 4.32,
1014
+ "learning_rate": 0.0002702396373056995,
1015
+ "loss": 0.2187,
1016
+ "step": 16200
1017
+ },
1018
+ {
1019
+ "epoch": 4.35,
1020
+ "learning_rate": 0.0002686366580310881,
1021
+ "loss": 0.2357,
1022
+ "step": 16300
1023
+ },
1024
+ {
1025
+ "epoch": 4.38,
1026
+ "learning_rate": 0.0002670174870466322,
1027
+ "loss": 0.2168,
1028
+ "step": 16400
1029
+ },
1030
+ {
1031
+ "epoch": 4.41,
1032
+ "learning_rate": 0.0002653983160621762,
1033
+ "loss": 0.2099,
1034
+ "step": 16500
1035
+ },
1036
+ {
1037
+ "epoch": 4.44,
1038
+ "learning_rate": 0.0002637791450777202,
1039
+ "loss": 0.2252,
1040
+ "step": 16600
1041
+ },
1042
+ {
1043
+ "epoch": 4.47,
1044
+ "learning_rate": 0.00026215997409326426,
1045
+ "loss": 0.2218,
1046
+ "step": 16700
1047
+ },
1048
+ {
1049
+ "epoch": 4.5,
1050
+ "learning_rate": 0.00026054080310880827,
1051
+ "loss": 0.2186,
1052
+ "step": 16800
1053
+ },
1054
+ {
1055
+ "epoch": 4.53,
1056
+ "learning_rate": 0.00025892163212435233,
1057
+ "loss": 0.2165,
1058
+ "step": 16900
1059
+ },
1060
+ {
1061
+ "epoch": 4.56,
1062
+ "learning_rate": 0.00025730246113989634,
1063
+ "loss": 0.2275,
1064
+ "step": 17000
1065
+ },
1066
+ {
1067
+ "epoch": 4.59,
1068
+ "learning_rate": 0.0002556832901554404,
1069
+ "loss": 0.2414,
1070
+ "step": 17100
1071
+ },
1072
+ {
1073
+ "epoch": 4.62,
1074
+ "learning_rate": 0.00025406411917098447,
1075
+ "loss": 0.2358,
1076
+ "step": 17200
1077
+ },
1078
+ {
1079
+ "epoch": 4.65,
1080
+ "learning_rate": 0.00025244494818652853,
1081
+ "loss": 0.226,
1082
+ "step": 17300
1083
+ },
1084
+ {
1085
+ "epoch": 4.68,
1086
+ "learning_rate": 0.00025082577720207254,
1087
+ "loss": 0.2181,
1088
+ "step": 17400
1089
+ },
1090
+ {
1091
+ "epoch": 4.71,
1092
+ "learning_rate": 0.0002492066062176166,
1093
+ "loss": 0.226,
1094
+ "step": 17500
1095
+ },
1096
+ {
1097
+ "epoch": 4.74,
1098
+ "learning_rate": 0.0002475874352331606,
1099
+ "loss": 0.2275,
1100
+ "step": 17600
1101
+ },
1102
+ {
1103
+ "epoch": 4.77,
1104
+ "learning_rate": 0.0002459682642487047,
1105
+ "loss": 0.2238,
1106
+ "step": 17700
1107
+ },
1108
+ {
1109
+ "epoch": 4.81,
1110
+ "learning_rate": 0.0002443490932642487,
1111
+ "loss": 0.2139,
1112
+ "step": 17800
1113
+ },
1114
+ {
1115
+ "epoch": 4.84,
1116
+ "learning_rate": 0.00024272992227979275,
1117
+ "loss": 0.2268,
1118
+ "step": 17900
1119
+ },
1120
+ {
1121
+ "epoch": 4.87,
1122
+ "learning_rate": 0.0002411107512953368,
1123
+ "loss": 0.2272,
1124
+ "step": 18000
1125
+ },
1126
+ {
1127
+ "epoch": 4.9,
1128
+ "learning_rate": 0.00023949158031088083,
1129
+ "loss": 0.2203,
1130
+ "step": 18100
1131
+ },
1132
+ {
1133
+ "epoch": 4.93,
1134
+ "learning_rate": 0.00023787240932642486,
1135
+ "loss": 0.2316,
1136
+ "step": 18200
1137
+ },
1138
+ {
1139
+ "epoch": 4.96,
1140
+ "learning_rate": 0.0002362532383419689,
1141
+ "loss": 0.2238,
1142
+ "step": 18300
1143
+ },
1144
+ {
1145
+ "epoch": 4.99,
1146
+ "learning_rate": 0.00023463406735751296,
1147
+ "loss": 0.2134,
1148
+ "step": 18400
1149
+ },
1150
+ {
1151
+ "epoch": 5.02,
1152
+ "learning_rate": 0.000233014896373057,
1153
+ "loss": 0.1554,
1154
+ "step": 18500
1155
+ },
1156
+ {
1157
+ "epoch": 5.05,
1158
+ "learning_rate": 0.00023139572538860104,
1159
+ "loss": 0.135,
1160
+ "step": 18600
1161
+ },
1162
+ {
1163
+ "epoch": 5.08,
1164
+ "learning_rate": 0.00022979274611398964,
1165
+ "loss": 0.1328,
1166
+ "step": 18700
1167
+ },
1168
+ {
1169
+ "epoch": 5.11,
1170
+ "learning_rate": 0.00022817357512953368,
1171
+ "loss": 0.145,
1172
+ "step": 18800
1173
+ },
1174
+ {
1175
+ "epoch": 5.14,
1176
+ "learning_rate": 0.00022655440414507771,
1177
+ "loss": 0.1353,
1178
+ "step": 18900
1179
+ },
1180
+ {
1181
+ "epoch": 5.17,
1182
+ "learning_rate": 0.00022493523316062175,
1183
+ "loss": 0.146,
1184
+ "step": 19000
1185
+ },
1186
+ {
1187
+ "epoch": 5.2,
1188
+ "learning_rate": 0.00022331606217616581,
1189
+ "loss": 0.1508,
1190
+ "step": 19100
1191
+ },
1192
+ {
1193
+ "epoch": 5.23,
1194
+ "learning_rate": 0.00022169689119170985,
1195
+ "loss": 0.1587,
1196
+ "step": 19200
1197
+ },
1198
+ {
1199
+ "epoch": 5.26,
1200
+ "learning_rate": 0.0002200777202072539,
1201
+ "loss": 0.1504,
1202
+ "step": 19300
1203
+ },
1204
+ {
1205
+ "epoch": 5.29,
1206
+ "learning_rate": 0.00021845854922279793,
1207
+ "loss": 0.15,
1208
+ "step": 19400
1209
+ },
1210
+ {
1211
+ "epoch": 5.32,
1212
+ "learning_rate": 0.00021683937823834196,
1213
+ "loss": 0.1537,
1214
+ "step": 19500
1215
+ },
1216
+ {
1217
+ "epoch": 5.35,
1218
+ "learning_rate": 0.00021522020725388603,
1219
+ "loss": 0.1467,
1220
+ "step": 19600
1221
+ },
1222
+ {
1223
+ "epoch": 5.38,
1224
+ "learning_rate": 0.00021360103626943006,
1225
+ "loss": 0.155,
1226
+ "step": 19700
1227
+ },
1228
+ {
1229
+ "epoch": 5.41,
1230
+ "learning_rate": 0.0002119818652849741,
1231
+ "loss": 0.148,
1232
+ "step": 19800
1233
+ },
1234
+ {
1235
+ "epoch": 5.44,
1236
+ "learning_rate": 0.00021036269430051814,
1237
+ "loss": 0.1419,
1238
+ "step": 19900
1239
+ },
1240
+ {
1241
+ "epoch": 5.47,
1242
+ "learning_rate": 0.00020874352331606217,
1243
+ "loss": 0.154,
1244
+ "step": 20000
1245
+ },
1246
+ {
1247
+ "epoch": 5.47,
1248
+ "eval_loss": 0.5057598948478699,
1249
+ "eval_runtime": 487.4254,
1250
+ "eval_samples_per_second": 0.544,
1251
+ "eval_steps_per_second": 0.035,
1252
+ "eval_wer": 25.731181077193543,
1253
+ "step": 20000
1254
+ },
1255
+ {
1256
+ "epoch": 5.5,
1257
+ "learning_rate": 0.00020712435233160624,
1258
+ "loss": 0.1565,
1259
+ "step": 20100
1260
+ },
1261
+ {
1262
+ "epoch": 5.54,
1263
+ "learning_rate": 0.00020550518134715027,
1264
+ "loss": 0.1496,
1265
+ "step": 20200
1266
+ },
1267
+ {
1268
+ "epoch": 5.57,
1269
+ "learning_rate": 0.0002038860103626943,
1270
+ "loss": 0.1639,
1271
+ "step": 20300
1272
+ },
1273
+ {
1274
+ "epoch": 5.6,
1275
+ "learning_rate": 0.00020226683937823835,
1276
+ "loss": 0.1572,
1277
+ "step": 20400
1278
+ },
1279
+ {
1280
+ "epoch": 5.63,
1281
+ "learning_rate": 0.0002006476683937824,
1282
+ "loss": 0.1423,
1283
+ "step": 20500
1284
+ },
1285
+ {
1286
+ "epoch": 5.66,
1287
+ "learning_rate": 0.00019902849740932645,
1288
+ "loss": 0.1494,
1289
+ "step": 20600
1290
+ },
1291
+ {
1292
+ "epoch": 5.69,
1293
+ "learning_rate": 0.00019740932642487048,
1294
+ "loss": 0.1487,
1295
+ "step": 20700
1296
+ },
1297
+ {
1298
+ "epoch": 5.72,
1299
+ "learning_rate": 0.00019579015544041452,
1300
+ "loss": 0.1569,
1301
+ "step": 20800
1302
+ },
1303
+ {
1304
+ "epoch": 5.75,
1305
+ "learning_rate": 0.00019417098445595853,
1306
+ "loss": 0.1472,
1307
+ "step": 20900
1308
+ },
1309
+ {
1310
+ "epoch": 5.78,
1311
+ "learning_rate": 0.0001925518134715026,
1312
+ "loss": 0.1432,
1313
+ "step": 21000
1314
+ },
1315
+ {
1316
+ "epoch": 5.81,
1317
+ "learning_rate": 0.00019093264248704663,
1318
+ "loss": 0.1551,
1319
+ "step": 21100
1320
+ },
1321
+ {
1322
+ "epoch": 5.84,
1323
+ "learning_rate": 0.00018931347150259067,
1324
+ "loss": 0.1505,
1325
+ "step": 21200
1326
+ },
1327
+ {
1328
+ "epoch": 5.87,
1329
+ "learning_rate": 0.0001876943005181347,
1330
+ "loss": 0.1487,
1331
+ "step": 21300
1332
+ },
1333
+ {
1334
+ "epoch": 5.9,
1335
+ "learning_rate": 0.00018607512953367874,
1336
+ "loss": 0.1602,
1337
+ "step": 21400
1338
+ },
1339
+ {
1340
+ "epoch": 5.93,
1341
+ "learning_rate": 0.0001844559585492228,
1342
+ "loss": 0.147,
1343
+ "step": 21500
1344
+ },
1345
+ {
1346
+ "epoch": 5.96,
1347
+ "learning_rate": 0.00018283678756476684,
1348
+ "loss": 0.1437,
1349
+ "step": 21600
1350
+ },
1351
+ {
1352
+ "epoch": 5.99,
1353
+ "learning_rate": 0.00018121761658031088,
1354
+ "loss": 0.1611,
1355
+ "step": 21700
1356
+ },
1357
+ {
1358
+ "epoch": 6.02,
1359
+ "learning_rate": 0.00017959844559585492,
1360
+ "loss": 0.0933,
1361
+ "step": 21800
1362
+ },
1363
+ {
1364
+ "epoch": 6.05,
1365
+ "learning_rate": 0.00017797927461139895,
1366
+ "loss": 0.0719,
1367
+ "step": 21900
1368
+ },
1369
+ {
1370
+ "epoch": 6.08,
1371
+ "learning_rate": 0.00017636010362694302,
1372
+ "loss": 0.0872,
1373
+ "step": 22000
1374
+ },
1375
+ {
1376
+ "epoch": 6.11,
1377
+ "learning_rate": 0.0001747571243523316,
1378
+ "loss": 0.0816,
1379
+ "step": 22100
1380
+ },
1381
+ {
1382
+ "epoch": 6.14,
1383
+ "learning_rate": 0.00017313795336787566,
1384
+ "loss": 0.0808,
1385
+ "step": 22200
1386
+ },
1387
+ {
1388
+ "epoch": 6.17,
1389
+ "learning_rate": 0.0001715187823834197,
1390
+ "loss": 0.0817,
1391
+ "step": 22300
1392
+ },
1393
+ {
1394
+ "epoch": 6.2,
1395
+ "learning_rate": 0.00016989961139896373,
1396
+ "loss": 0.0832,
1397
+ "step": 22400
1398
+ },
1399
+ {
1400
+ "epoch": 6.23,
1401
+ "learning_rate": 0.00016828044041450777,
1402
+ "loss": 0.0941,
1403
+ "step": 22500
1404
+ },
1405
+ {
1406
+ "epoch": 6.27,
1407
+ "learning_rate": 0.0001666612694300518,
1408
+ "loss": 0.0931,
1409
+ "step": 22600
1410
+ },
1411
+ {
1412
+ "epoch": 6.3,
1413
+ "learning_rate": 0.00016504209844559587,
1414
+ "loss": 0.0843,
1415
+ "step": 22700
1416
+ },
1417
+ {
1418
+ "epoch": 6.33,
1419
+ "learning_rate": 0.00016343911917098445,
1420
+ "loss": 0.0846,
1421
+ "step": 22800
1422
+ },
1423
+ {
1424
+ "epoch": 6.36,
1425
+ "learning_rate": 0.0001618199481865285,
1426
+ "loss": 0.0942,
1427
+ "step": 22900
1428
+ },
1429
+ {
1430
+ "epoch": 6.39,
1431
+ "learning_rate": 0.00016020077720207255,
1432
+ "loss": 0.0901,
1433
+ "step": 23000
1434
+ },
1435
+ {
1436
+ "epoch": 6.42,
1437
+ "learning_rate": 0.00015858160621761658,
1438
+ "loss": 0.0882,
1439
+ "step": 23100
1440
+ },
1441
+ {
1442
+ "epoch": 6.45,
1443
+ "learning_rate": 0.00015696243523316062,
1444
+ "loss": 0.0854,
1445
+ "step": 23200
1446
+ },
1447
+ {
1448
+ "epoch": 6.48,
1449
+ "learning_rate": 0.00015534326424870468,
1450
+ "loss": 0.0908,
1451
+ "step": 23300
1452
+ },
1453
+ {
1454
+ "epoch": 6.51,
1455
+ "learning_rate": 0.00015372409326424872,
1456
+ "loss": 0.0853,
1457
+ "step": 23400
1458
+ },
1459
+ {
1460
+ "epoch": 6.54,
1461
+ "learning_rate": 0.00015210492227979276,
1462
+ "loss": 0.088,
1463
+ "step": 23500
1464
+ },
1465
+ {
1466
+ "epoch": 6.57,
1467
+ "learning_rate": 0.0001504857512953368,
1468
+ "loss": 0.0928,
1469
+ "step": 23600
1470
+ },
1471
+ {
1472
+ "epoch": 6.6,
1473
+ "learning_rate": 0.00014886658031088083,
1474
+ "loss": 0.0987,
1475
+ "step": 23700
1476
+ },
1477
+ {
1478
+ "epoch": 6.63,
1479
+ "learning_rate": 0.0001472474093264249,
1480
+ "loss": 0.0913,
1481
+ "step": 23800
1482
+ },
1483
+ {
1484
+ "epoch": 6.66,
1485
+ "learning_rate": 0.00014562823834196893,
1486
+ "loss": 0.0932,
1487
+ "step": 23900
1488
+ },
1489
+ {
1490
+ "epoch": 6.69,
1491
+ "learning_rate": 0.00014400906735751297,
1492
+ "loss": 0.0941,
1493
+ "step": 24000
1494
+ },
1495
+ {
1496
+ "epoch": 6.69,
1497
+ "eval_loss": 0.5185205340385437,
1498
+ "eval_runtime": 511.8024,
1499
+ "eval_samples_per_second": 0.518,
1500
+ "eval_steps_per_second": 0.033,
1501
+ "eval_wer": 29.47099248841298,
1502
+ "step": 24000
1503
+ },
1504
+ {
1505
+ "epoch": 6.72,
1506
+ "learning_rate": 0.000142389896373057,
1507
+ "loss": 0.0883,
1508
+ "step": 24100
1509
+ },
1510
+ {
1511
+ "epoch": 6.75,
1512
+ "learning_rate": 0.00014077072538860102,
1513
+ "loss": 0.0963,
1514
+ "step": 24200
1515
+ },
1516
+ {
1517
+ "epoch": 6.78,
1518
+ "learning_rate": 0.00013915155440414508,
1519
+ "loss": 0.0915,
1520
+ "step": 24300
1521
+ },
1522
+ {
1523
+ "epoch": 6.81,
1524
+ "learning_rate": 0.00013753238341968912,
1525
+ "loss": 0.098,
1526
+ "step": 24400
1527
+ },
1528
+ {
1529
+ "epoch": 6.84,
1530
+ "learning_rate": 0.00013591321243523315,
1531
+ "loss": 0.0911,
1532
+ "step": 24500
1533
+ },
1534
+ {
1535
+ "epoch": 6.87,
1536
+ "learning_rate": 0.0001342940414507772,
1537
+ "loss": 0.0931,
1538
+ "step": 24600
1539
+ },
1540
+ {
1541
+ "epoch": 6.9,
1542
+ "learning_rate": 0.00013267487046632123,
1543
+ "loss": 0.0873,
1544
+ "step": 24700
1545
+ },
1546
+ {
1547
+ "epoch": 6.93,
1548
+ "learning_rate": 0.0001310556994818653,
1549
+ "loss": 0.0932,
1550
+ "step": 24800
1551
+ },
1552
+ {
1553
+ "epoch": 6.96,
1554
+ "learning_rate": 0.00012943652849740933,
1555
+ "loss": 0.0887,
1556
+ "step": 24900
1557
+ },
1558
+ {
1559
+ "epoch": 7.0,
1560
+ "learning_rate": 0.00012781735751295336,
1561
+ "loss": 0.0974,
1562
+ "step": 25000
1563
+ },
1564
+ {
1565
+ "epoch": 7.03,
1566
+ "learning_rate": 0.0001261981865284974,
1567
+ "loss": 0.0446,
1568
+ "step": 25100
1569
+ },
1570
+ {
1571
+ "epoch": 7.06,
1572
+ "learning_rate": 0.00012457901554404146,
1573
+ "loss": 0.0377,
1574
+ "step": 25200
1575
+ },
1576
+ {
1577
+ "epoch": 7.09,
1578
+ "learning_rate": 0.0001229598445595855,
1579
+ "loss": 0.038,
1580
+ "step": 25300
1581
+ },
1582
+ {
1583
+ "epoch": 7.12,
1584
+ "learning_rate": 0.00012134067357512954,
1585
+ "loss": 0.0402,
1586
+ "step": 25400
1587
+ },
1588
+ {
1589
+ "epoch": 7.15,
1590
+ "learning_rate": 0.00011972150259067357,
1591
+ "loss": 0.0425,
1592
+ "step": 25500
1593
+ },
1594
+ {
1595
+ "epoch": 7.18,
1596
+ "learning_rate": 0.00011810233160621763,
1597
+ "loss": 0.0398,
1598
+ "step": 25600
1599
+ },
1600
+ {
1601
+ "epoch": 7.21,
1602
+ "learning_rate": 0.00011648316062176166,
1603
+ "loss": 0.0441,
1604
+ "step": 25700
1605
+ },
1606
+ {
1607
+ "epoch": 7.24,
1608
+ "learning_rate": 0.0001148639896373057,
1609
+ "loss": 0.0439,
1610
+ "step": 25800
1611
+ },
1612
+ {
1613
+ "epoch": 7.27,
1614
+ "learning_rate": 0.00011324481865284975,
1615
+ "loss": 0.0412,
1616
+ "step": 25900
1617
+ },
1618
+ {
1619
+ "epoch": 7.3,
1620
+ "learning_rate": 0.00011162564766839379,
1621
+ "loss": 0.0435,
1622
+ "step": 26000
1623
+ },
1624
+ {
1625
+ "epoch": 7.33,
1626
+ "learning_rate": 0.00011000647668393784,
1627
+ "loss": 0.0462,
1628
+ "step": 26100
1629
+ },
1630
+ {
1631
+ "epoch": 7.36,
1632
+ "learning_rate": 0.00010838730569948187,
1633
+ "loss": 0.0414,
1634
+ "step": 26200
1635
+ },
1636
+ {
1637
+ "epoch": 7.39,
1638
+ "learning_rate": 0.0001067681347150259,
1639
+ "loss": 0.0432,
1640
+ "step": 26300
1641
+ },
1642
+ {
1643
+ "epoch": 7.42,
1644
+ "learning_rate": 0.00010514896373056995,
1645
+ "loss": 0.0428,
1646
+ "step": 26400
1647
+ },
1648
+ {
1649
+ "epoch": 7.45,
1650
+ "learning_rate": 0.00010352979274611398,
1651
+ "loss": 0.0456,
1652
+ "step": 26500
1653
+ },
1654
+ {
1655
+ "epoch": 7.48,
1656
+ "learning_rate": 0.00010191062176165803,
1657
+ "loss": 0.046,
1658
+ "step": 26600
1659
+ },
1660
+ {
1661
+ "epoch": 7.51,
1662
+ "learning_rate": 0.00010029145077720207,
1663
+ "loss": 0.0408,
1664
+ "step": 26700
1665
+ },
1666
+ {
1667
+ "epoch": 7.54,
1668
+ "learning_rate": 9.867227979274612e-05,
1669
+ "loss": 0.0437,
1670
+ "step": 26800
1671
+ },
1672
+ {
1673
+ "epoch": 7.57,
1674
+ "learning_rate": 9.705310880829016e-05,
1675
+ "loss": 0.0468,
1676
+ "step": 26900
1677
+ },
1678
+ {
1679
+ "epoch": 7.6,
1680
+ "learning_rate": 9.54339378238342e-05,
1681
+ "loss": 0.0402,
1682
+ "step": 27000
1683
+ },
1684
+ {
1685
+ "epoch": 7.63,
1686
+ "learning_rate": 9.381476683937824e-05,
1687
+ "loss": 0.0416,
1688
+ "step": 27100
1689
+ },
1690
+ {
1691
+ "epoch": 7.66,
1692
+ "learning_rate": 9.219559585492228e-05,
1693
+ "loss": 0.0431,
1694
+ "step": 27200
1695
+ },
1696
+ {
1697
+ "epoch": 7.69,
1698
+ "learning_rate": 9.057642487046633e-05,
1699
+ "loss": 0.0426,
1700
+ "step": 27300
1701
+ },
1702
+ {
1703
+ "epoch": 7.73,
1704
+ "learning_rate": 8.895725388601037e-05,
1705
+ "loss": 0.0459,
1706
+ "step": 27400
1707
+ },
1708
+ {
1709
+ "epoch": 7.76,
1710
+ "learning_rate": 8.73380829015544e-05,
1711
+ "loss": 0.0454,
1712
+ "step": 27500
1713
+ },
1714
+ {
1715
+ "epoch": 7.79,
1716
+ "learning_rate": 8.571891191709846e-05,
1717
+ "loss": 0.0436,
1718
+ "step": 27600
1719
+ },
1720
+ {
1721
+ "epoch": 7.82,
1722
+ "learning_rate": 8.409974093264248e-05,
1723
+ "loss": 0.043,
1724
+ "step": 27700
1725
+ },
1726
+ {
1727
+ "epoch": 7.85,
1728
+ "learning_rate": 8.248056994818653e-05,
1729
+ "loss": 0.0464,
1730
+ "step": 27800
1731
+ },
1732
+ {
1733
+ "epoch": 7.88,
1734
+ "learning_rate": 8.086139896373057e-05,
1735
+ "loss": 0.0426,
1736
+ "step": 27900
1737
+ },
1738
+ {
1739
+ "epoch": 7.91,
1740
+ "learning_rate": 7.924222797927462e-05,
1741
+ "loss": 0.0379,
1742
+ "step": 28000
1743
+ },
1744
+ {
1745
+ "epoch": 7.91,
1746
+ "eval_loss": 0.6318183541297913,
1747
+ "eval_runtime": 486.5478,
1748
+ "eval_samples_per_second": 0.545,
1749
+ "eval_steps_per_second": 0.035,
1750
+ "eval_wer": 26.897874380693622,
1751
+ "step": 28000
1752
+ },
1753
+ {
1754
+ "epoch": 7.94,
1755
+ "learning_rate": 7.762305699481865e-05,
1756
+ "loss": 0.038,
1757
+ "step": 28100
1758
+ },
1759
+ {
1760
+ "epoch": 7.97,
1761
+ "learning_rate": 7.600388601036269e-05,
1762
+ "loss": 0.0413,
1763
+ "step": 28200
1764
+ },
1765
+ {
1766
+ "epoch": 8.0,
1767
+ "learning_rate": 7.438471502590674e-05,
1768
+ "loss": 0.043,
1769
+ "step": 28300
1770
+ },
1771
+ {
1772
+ "epoch": 8.03,
1773
+ "learning_rate": 7.276554404145078e-05,
1774
+ "loss": 0.0169,
1775
+ "step": 28400
1776
+ },
1777
+ {
1778
+ "epoch": 8.06,
1779
+ "learning_rate": 7.114637305699483e-05,
1780
+ "loss": 0.0178,
1781
+ "step": 28500
1782
+ },
1783
+ {
1784
+ "epoch": 8.09,
1785
+ "learning_rate": 6.952720207253886e-05,
1786
+ "loss": 0.0138,
1787
+ "step": 28600
1788
+ },
1789
+ {
1790
+ "epoch": 8.12,
1791
+ "learning_rate": 6.79080310880829e-05,
1792
+ "loss": 0.0134,
1793
+ "step": 28700
1794
+ },
1795
+ {
1796
+ "epoch": 8.15,
1797
+ "learning_rate": 6.628886010362695e-05,
1798
+ "loss": 0.0131,
1799
+ "step": 28800
1800
+ },
1801
+ {
1802
+ "epoch": 8.18,
1803
+ "learning_rate": 6.468588082901554e-05,
1804
+ "loss": 0.0165,
1805
+ "step": 28900
1806
+ },
1807
+ {
1808
+ "epoch": 8.21,
1809
+ "learning_rate": 6.306670984455959e-05,
1810
+ "loss": 0.0159,
1811
+ "step": 29000
1812
+ },
1813
+ {
1814
+ "epoch": 8.24,
1815
+ "learning_rate": 6.144753886010363e-05,
1816
+ "loss": 0.0135,
1817
+ "step": 29100
1818
+ },
1819
+ {
1820
+ "epoch": 8.27,
1821
+ "learning_rate": 5.9828367875647666e-05,
1822
+ "loss": 0.0164,
1823
+ "step": 29200
1824
+ },
1825
+ {
1826
+ "epoch": 8.3,
1827
+ "learning_rate": 5.820919689119171e-05,
1828
+ "loss": 0.0138,
1829
+ "step": 29300
1830
+ },
1831
+ {
1832
+ "epoch": 8.33,
1833
+ "learning_rate": 5.659002590673575e-05,
1834
+ "loss": 0.0147,
1835
+ "step": 29400
1836
+ },
1837
+ {
1838
+ "epoch": 8.36,
1839
+ "learning_rate": 5.498704663212435e-05,
1840
+ "loss": 0.015,
1841
+ "step": 29500
1842
+ },
1843
+ {
1844
+ "epoch": 8.39,
1845
+ "learning_rate": 5.3367875647668394e-05,
1846
+ "loss": 0.0144,
1847
+ "step": 29600
1848
+ },
1849
+ {
1850
+ "epoch": 8.42,
1851
+ "learning_rate": 5.174870466321244e-05,
1852
+ "loss": 0.0171,
1853
+ "step": 29700
1854
+ },
1855
+ {
1856
+ "epoch": 8.45,
1857
+ "learning_rate": 5.012953367875648e-05,
1858
+ "loss": 0.014,
1859
+ "step": 29800
1860
+ },
1861
+ {
1862
+ "epoch": 8.49,
1863
+ "learning_rate": 4.8510362694300525e-05,
1864
+ "loss": 0.0128,
1865
+ "step": 29900
1866
+ },
1867
+ {
1868
+ "epoch": 8.52,
1869
+ "learning_rate": 4.6891191709844555e-05,
1870
+ "loss": 0.017,
1871
+ "step": 30000
1872
+ },
1873
+ {
1874
+ "epoch": 8.55,
1875
+ "learning_rate": 4.52720207253886e-05,
1876
+ "loss": 0.014,
1877
+ "step": 30100
1878
+ },
1879
+ {
1880
+ "epoch": 8.58,
1881
+ "learning_rate": 4.365284974093264e-05,
1882
+ "loss": 0.0147,
1883
+ "step": 30200
1884
+ },
1885
+ {
1886
+ "epoch": 8.61,
1887
+ "learning_rate": 4.2033678756476686e-05,
1888
+ "loss": 0.0143,
1889
+ "step": 30300
1890
+ },
1891
+ {
1892
+ "epoch": 8.64,
1893
+ "learning_rate": 4.041450777202073e-05,
1894
+ "loss": 0.016,
1895
+ "step": 30400
1896
+ },
1897
+ {
1898
+ "epoch": 8.67,
1899
+ "learning_rate": 3.879533678756477e-05,
1900
+ "loss": 0.0146,
1901
+ "step": 30500
1902
+ },
1903
+ {
1904
+ "epoch": 8.7,
1905
+ "learning_rate": 3.717616580310881e-05,
1906
+ "loss": 0.0152,
1907
+ "step": 30600
1908
+ },
1909
+ {
1910
+ "epoch": 8.73,
1911
+ "learning_rate": 3.5556994818652846e-05,
1912
+ "loss": 0.013,
1913
+ "step": 30700
1914
+ },
1915
+ {
1916
+ "epoch": 8.76,
1917
+ "learning_rate": 3.393782383419689e-05,
1918
+ "loss": 0.013,
1919
+ "step": 30800
1920
+ },
1921
+ {
1922
+ "epoch": 8.79,
1923
+ "learning_rate": 3.2318652849740933e-05,
1924
+ "loss": 0.0106,
1925
+ "step": 30900
1926
+ },
1927
+ {
1928
+ "epoch": 8.82,
1929
+ "learning_rate": 3.069948186528497e-05,
1930
+ "loss": 0.015,
1931
+ "step": 31000
1932
+ },
1933
+ {
1934
+ "epoch": 8.85,
1935
+ "learning_rate": 2.9080310880829017e-05,
1936
+ "loss": 0.0116,
1937
+ "step": 31100
1938
+ },
1939
+ {
1940
+ "epoch": 8.88,
1941
+ "learning_rate": 2.7461139896373057e-05,
1942
+ "loss": 0.0136,
1943
+ "step": 31200
1944
+ },
1945
+ {
1946
+ "epoch": 8.91,
1947
+ "learning_rate": 2.5841968911917097e-05,
1948
+ "loss": 0.0121,
1949
+ "step": 31300
1950
+ },
1951
+ {
1952
+ "epoch": 8.94,
1953
+ "learning_rate": 2.422279792746114e-05,
1954
+ "loss": 0.0131,
1955
+ "step": 31400
1956
+ },
1957
+ {
1958
+ "epoch": 8.97,
1959
+ "learning_rate": 2.2603626943005185e-05,
1960
+ "loss": 0.0155,
1961
+ "step": 31500
1962
+ },
1963
+ {
1964
+ "epoch": 9.0,
1965
+ "learning_rate": 2.098445595854922e-05,
1966
+ "loss": 0.0111,
1967
+ "step": 31600
1968
+ },
1969
+ {
1970
+ "epoch": 9.03,
1971
+ "learning_rate": 1.9365284974093265e-05,
1972
+ "loss": 0.004,
1973
+ "step": 31700
1974
+ },
1975
+ {
1976
+ "epoch": 9.06,
1977
+ "learning_rate": 1.774611398963731e-05,
1978
+ "loss": 0.0034,
1979
+ "step": 31800
1980
+ },
1981
+ {
1982
+ "epoch": 9.09,
1983
+ "learning_rate": 1.6126943005181345e-05,
1984
+ "loss": 0.0041,
1985
+ "step": 31900
1986
+ },
1987
+ {
1988
+ "epoch": 9.12,
1989
+ "learning_rate": 1.4507772020725389e-05,
1990
+ "loss": 0.0039,
1991
+ "step": 32000
1992
+ },
1993
+ {
1994
+ "epoch": 9.12,
1995
+ "eval_loss": 0.7823485732078552,
1996
+ "eval_runtime": 510.0267,
1997
+ "eval_samples_per_second": 0.52,
1998
+ "eval_steps_per_second": 0.033,
1999
+ "eval_wer": 26.306536678919613,
2000
+ "step": 32000
2001
+ },
2002
+ {
2003
+ "epoch": 9.15,
2004
+ "learning_rate": 1.288860103626943e-05,
2005
+ "loss": 0.003,
2006
+ "step": 32100
2007
+ },
2008
+ {
2009
+ "epoch": 9.18,
2010
+ "learning_rate": 1.1269430051813473e-05,
2011
+ "loss": 0.0036,
2012
+ "step": 32200
2013
+ },
2014
+ {
2015
+ "epoch": 9.22,
2016
+ "learning_rate": 9.650259067357513e-06,
2017
+ "loss": 0.0043,
2018
+ "step": 32300
2019
+ },
2020
+ {
2021
+ "epoch": 9.25,
2022
+ "learning_rate": 8.031088082901555e-06,
2023
+ "loss": 0.0044,
2024
+ "step": 32400
2025
+ },
2026
+ {
2027
+ "epoch": 9.28,
2028
+ "learning_rate": 6.4119170984455965e-06,
2029
+ "loss": 0.003,
2030
+ "step": 32500
2031
+ },
2032
+ {
2033
+ "epoch": 9.31,
2034
+ "learning_rate": 4.7927461139896375e-06,
2035
+ "loss": 0.0032,
2036
+ "step": 32600
2037
+ },
2038
+ {
2039
+ "epoch": 9.34,
2040
+ "learning_rate": 3.1735751295336785e-06,
2041
+ "loss": 0.0032,
2042
+ "step": 32700
2043
+ },
2044
+ {
2045
+ "epoch": 9.37,
2046
+ "learning_rate": 1.5544041450777201e-06,
2047
+ "loss": 0.003,
2048
+ "step": 32800
2049
+ },
2050
+ {
2051
+ "epoch": 9.39,
2052
+ "step": 32880,
2053
+ "total_flos": 3.411337442033664e+19,
2054
+ "train_loss": 0.25426562409440095,
2055
+ "train_runtime": 60905.8756,
2056
+ "train_samples_per_second": 8.635,
2057
+ "train_steps_per_second": 0.54
2058
+ }
2059
+ ],
2060
+ "max_steps": 32880,
2061
+ "num_train_epochs": 10,
2062
+ "total_flos": 3.411337442033664e+19,
2063
+ "trial_name": null,
2064
+ "trial_params": null
2065
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aede2f424caa53ac848418aa153e15e0ab99786d0e263332ba650651e9ae5e2
3
+ size 3963
vocab.json ADDED
The diff for this file is too large to render. See raw diff