hjkim00's picture
Upload TestTime-RLVR-v2 from Full-pipeline-relative_0827 branch
f50dc54 verified
import traceback
from typing import List, Tuple
import ast
import time
import requests
import docker
from docker.errors import DockerException
import socket
import numpy as np
from pebble import ProcessPool
from sandbox_fusion import run_code, RunCodeRequest, set_endpoint, RunStatus
from absolute_zero_reasoner.utils.code_utils.templates import (
RUN_CODE_TEMPLATE_REPR,
EVAL_INPUT_PREDICTION_TEMPLATE_REPR,
EVAL_OUTPUT_PREDICTION_TEMPLATE_REPR,
VALIDATE_CODE_TEMPLATE_REPR,
CHECK_DETERMINISM_TEMPLATE_REPR,
EVAL_K_INPUT_PREDICTION_TEMPLATE,
EVAL_K_OUTPUT_PREDICTION_TEMPLATE,
)
from absolute_zero_reasoner.utils.code_utils.checks import contains_banned_imports
from absolute_zero_reasoner.utils.code_utils.parsers import parse_error
# Docker images
IMAGES = {
'global': 'volcengine/sandbox-fusion:server-20250609',
'china': 'vemlp-cn-beijing.cr.volces.com/preset-images/code-sandbox:server-20250609'
}
class DockerAPIRunner:
def __init__(self, use_china_mirror=True, silent=False):
self.image = IMAGES['china'] if use_china_mirror else IMAGES['global']
self.container = None
self.silent = silent
self.client = docker.from_env()
self.port = self._find_free_port()
def _find_free_port(self):
"""Find an available port dynamically"""
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', 0))
s.listen(1)
port = s.getsockname()[1]
return port
def start(self):
"""Start the Docker container using Docker API"""
try:
# Pull image if not exists
if not self.silent:
print(f"Pulling image: {self.image}")
self.client.images.pull(self.image)
# Run container
self.container = self.client.containers.run(
self.image,
ports={'8080/tcp': self.port},
detach=True,
remove=True # Auto-remove when stopped
)
if not self.silent:
print(f"Container started: {self.container.short_id}")
return True
except DockerException as e:
if not self.silent:
print(f"Error starting container: {e}")
return False
def stop(self):
"""Stop the Docker container"""
if self.container:
try:
self.container.stop()
if not self.silent:
print("Container stopped")
return True
except DockerException as e:
if not self.silent:
print(f"Error stopping container: {e}")
return False
return False
def _wait_for_container_ready(self, max_wait_time: int = 60, check_interval: float = 1.0):
"""Wait for the Docker container to be ready"""
if not self.container:
raise Exception("Container not started")
start_time = time.time()
while time.time() - start_time < max_wait_time:
# Reload container status
self.container.reload()
if not self.silent:
print(f"Container status: {self.container.status}")
if self.container.status == 'running':
# Container is running, now check if service is ready
# First try a simple port connection test
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.settimeout(2)
result = sock.connect_ex(('localhost', self.port))
sock.close()
if result == 0: # Port is open
# Try to make a simple request to test the service
try:
response = requests.get(f'http://localhost:{self.port}/', timeout=2)
if not self.silent:
print(f"Service responded with status: {response.status_code}")
return True # Service is responding
except requests.exceptions.RequestException:
# Try alternative endpoints or just accept that port is open
if not self.silent:
print(f"Port {self.port} is open, assuming service is ready")
return True
except:
pass
elif self.container.status in ['exited', 'dead']:
# Get container logs for debugging
logs = self.container.logs().decode('utf-8')
raise Exception(f"Container failed to start. Status: {self.container.status}. Logs: {logs[:500]}")
time.sleep(check_interval)
# Get final container logs for debugging
logs = self.container.logs().decode('utf-8') if self.container else "No container"
raise Exception(f"Container not ready after {max_wait_time} seconds. Final status: {self.container.status if self.container else 'None'}. Logs: {logs[:500]}")
class SandboxfusionExecutor:
def __init__(
self,
timeout_length: int = 10,
ast_check: bool = False,
max_workers: int = 1,
use_china_mirror: bool = True,
) -> None:
self.runner = DockerAPIRunner(use_china_mirror=use_china_mirror)
running = self.runner.start()
if not running:
raise Exception("Failed to start Sandboxfusion Docker container")
# Wait for the container to be ready
self._wait_for_container_ready()
set_endpoint(f'http://localhost:{self.runner.port}')
self.timeout_length = timeout_length
self.ast_check = ast_check
self.max_workers = max_workers
def _wait_for_container_ready(self, max_wait_time: int = 60, check_interval: float = 1.0):
"""Wait for the Docker container to be ready"""
self.runner._wait_for_container_ready(max_wait_time, check_interval)
def __del__(self):
try:
self.cleanup()
self.runner.stop()
except Exception as e:
print(f"Error terminating pool: {e}")
pass
def cleanup(self):
self.runner.stop()
def process_generation_to_code(self, gens: str):
return [g.strip().split('\n') for g in gens]
def run_code(self, code: str, inputs: str, imports: List[str] = []) -> Tuple[str, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = RUN_CODE_TEMPLATE_REPR.format(code=code, inputs=inputs)
# print(code_snippet)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return '', 'error'
return self.apply(code_snippet)
def validate_code(self, code: str, inputs: str, imports: List[str] = []) -> bool:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = VALIDATE_CODE_TEMPLATE_REPR.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False
_, status = self.apply(code_snippet)
return not 'error' in status.lower()
def eval_input_prediction(self, code: str, gold_output: str, agent_input: str, imports: List[str] = []) -> float:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_INPUT_PREDICTION_TEMPLATE_REPR.format(code=code, gold_output=gold_output, agent_input=agent_input)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_input_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_output_prediction(self, code: str, gold_output: str, agent_output: str, imports: List[str] = []) -> float:
try: # fast check if we dont need to run the code
if eval(gold_output) == eval(agent_output):
return 1.0
except:
pass
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
code_snippet = EVAL_OUTPUT_PREDICTION_TEMPLATE_REPR.format(code=code, gold_output=gold_output, agent_output=agent_output)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return 0.0
max_retries = 3
for retry in range(max_retries):
try:
correct, status = self.apply(code_snippet)
return 0.0 if 'error' in status.lower() or not eval(correct) else 1.0
except Exception as e:
if retry == max_retries - 1:
error_details = traceback.format_exc()
print(f"Error in eval_output_prediction: {e}\n{error_details}")
return
time.sleep(0.1 * (retry + 1)) # Exponential backoff
def eval_k_input_prediction(self, code: str, gold_output: str, k_agent_inputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_inputs = []
for k_agent_input in k_agent_inputs:
try:
ast.parse(f'f({k_agent_input})')
valid_k_agent_inputs.append(k_agent_input)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_INPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_inputs=valid_k_agent_inputs, repr_output=True))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_inputs)
return output_acc
def eval_k_output_prediction(self, code: str, gold_output: str, k_agent_outputs: List[str], imports: List[str] = []) -> List[float]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
invalid_lists = []
valid_k_agent_outputs = []
for k_agent_output in k_agent_outputs:
try:
if k_agent_output != '':
ast.parse(f'f({k_agent_output})')
valid_k_agent_outputs.append(k_agent_output)
else:
invalid_lists.append(0.0)
except:
invalid_lists.append(0.0)
acc_list, status = self.apply(EVAL_K_OUTPUT_PREDICTION_TEMPLATE(code=code, gold_output=gold_output, k_agent_outputs=valid_k_agent_outputs, repr_output=True))
assert 'error' not in status.lower()
output_acc = eval(acc_list) + invalid_lists
assert len(output_acc) == len(k_agent_outputs)
return output_acc
def check_all(
self,
code: str,
inputs: str,
banned_keywords: List[str] = [],
check_determinism: bool = True,
imports: List[str] = [],
check_error: bool = False,
banned_keywords_for_errors_and_exceptions: List[str] = [],
) -> Tuple[bool, str]:
if isinstance(imports, np.ndarray):
imports = imports.tolist()
if imports:
code = '\n'.join(imports) + '\n' + code
if contains_banned_imports(code=code, banned_keywords=banned_keywords, banned_keywords_for_errors_and_exceptions=banned_keywords_for_errors_and_exceptions if check_error else []):
return False, None
if check_error:
code_snippet = RUN_CODE_TEMPLATE_REPR.format(code=code, inputs=inputs)
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
if check_determinism: # run the code again, see if outputs are same
output_2, status_2 = self.apply(code_snippet)
if status_2.lower() != status.lower() and output != output_2:
return False, 'error'
# True if the code is valid code but might have error, output no error if the code returns something
return True, 'NoError' if status.lower() == 'done' else parse_error(status)
else:
if check_determinism:
code_snippet = CHECK_DETERMINISM_TEMPLATE_REPR.format(code=code, inputs=inputs)
else:
code_snippet = RUN_CODE_TEMPLATE_REPR.format(code=code, inputs=inputs)
if self.ast_check:
try:
ast.parse(code_snippet)
except:
return False, 'error'
output, status = self.apply(code_snippet)
return not 'error' in status.lower(), output
def apply(self, code) -> Tuple[str, str]:
try:
response = run_code(
RunCodeRequest(
code=code,
language='python',
compile_timeout=self.timeout_length,
run_timeout=self.timeout_length,
)
)
if response.status == RunStatus.Success:
# taking [1:-1] to exclude prefix space and suffix newline
return response.run_result.stdout.split('<FINAL_REPR_SYMBOL>')[-1][1:-1], 'done'
else:
return '', 'error'
except Exception as e:
error_msg = f"Execution error: {str(e)}"
return error_msg, 'error'
def _test():
batch_code = [
"""
def f(a):
return a
print('<FINAL_REPR_SYMBOL>', repr(f(12eee)))
"""
]
executor = SandboxfusionExecutor()
predictions = executor.apply(batch_code[0])
print(predictions)
if __name__ == '__main__':
_test()