|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Preprocess the GSM8k dataset to parquet format |
|
""" |
|
|
|
import os |
|
import datasets |
|
from glob import glob |
|
import argparse |
|
|
|
from verl.utils.hdfs_io import copy, makedirs |
|
from verl.utils.reward_score.math import remove_boxed, last_boxed_only_string |
|
|
|
|
|
def extract_solution(solution_str): |
|
return remove_boxed(last_boxed_only_string(solution_str)) |
|
|
|
|
|
METRIC_MAP = { |
|
'aime2024': 'math', |
|
'aime2025': 'math', |
|
'gpqa': 'mc', |
|
'amc2023': 'math', |
|
'math500': 'math', |
|
'minerva': 'math', |
|
'olympiadbench': 'math', |
|
'math': 'math', |
|
'orz': 'math', |
|
'simplerl': 'math', |
|
'hmmt_2025': 'math', |
|
'hmmt_2024': 'math', |
|
'live_math_bench': 'math', |
|
'big_math': 'math', |
|
'deepscaler': 'math', |
|
"math3to5": 'math', |
|
'dapo': 'math', |
|
} |
|
|
|
instruction_following = "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think> <answer> answer here </answer>. User: {}\nAssistant: <think>" |
|
boxed_instruction = "{}\nPlease reason step by step, and put your final answer within \\boxed{{}}." |
|
|
|
|
|
|
|
def make_map_fn(split, question_key, answer_key, do_extract_solution, reward_fn_extraction_type, nothink = False): |
|
|
|
def process_fn(example, idx): |
|
question = example.pop(question_key) |
|
|
|
if reward_fn_extraction_type == 'answer': |
|
formatted_question = (instruction_following if not nothink else instruction_following.strip(' <think>')).format(question) |
|
elif reward_fn_extraction_type == 'boxed': |
|
formatted_question = boxed_instruction.format(question) |
|
elif reward_fn_extraction_type == 'none': |
|
formatted_question = question |
|
|
|
if reward_fn_extraction_type != 'boxed': |
|
remove_string = "\n\nPlease reason step-by-step and put your choice letter without any other text with \\boxed{} in the end." |
|
replacement_string = '\n\nPlease reason step-by-step and put your choice letter without any other text with <answer> </answer> in the end.' |
|
formatted_question = formatted_question.replace(remove_string, replacement_string) |
|
|
|
answer = example.pop(answer_key) |
|
if do_extract_solution: |
|
solution = extract_solution(answer) |
|
else: |
|
solution = answer |
|
data_source = example.pop('data_source') |
|
data = { |
|
"data_source": data_source, |
|
"prompt": [{ |
|
"role": "user", |
|
"content": formatted_question |
|
}], |
|
"problem": question, |
|
"ability": "math", |
|
"reward_model": { |
|
"style": "rule", |
|
"ground_truth": solution |
|
}, |
|
"extra_info": { |
|
'split': split, |
|
'index': idx, |
|
'metric': METRIC_MAP[data_source], |
|
} |
|
} |
|
return data |
|
|
|
return process_fn |
|
|
|
|
|
def process_data(args): |
|
|
|
|
|
if args.train_set == 'math': |
|
dataset = datasets.load_dataset('DigitalLearningGmbH/MATH-lighteval', trust_remote_code=True) |
|
elif args.train_set == 'orz': |
|
dataset = datasets.load_dataset('json', data_files='data/orz_math_57k_collected.json') |
|
dataset = dataset.map(lambda x: {'problem': x['0']['value'], 'solution': x['1']['ground_truth']['value']}) |
|
elif args.train_set == 'simplerl': |
|
dataset = datasets.load_dataset('json', data_files='data/math_level3to5_data_processed_with_qwen_prompt.json') |
|
dataset = dataset.map(lambda x: {'problem': x['input'].replace('<|im_start|>system\nPlease reason step by step, and put your final answer within \\boxed{}.<|im_end|>\n<|im_start|>user\n', '').replace('<|im_end|>\n<|im_start|>assistant', ''), 'solution': x['gt_answer']}) |
|
elif args.train_set == 'big_math': |
|
dataset = datasets.load_dataset('SynthLabsAI/Big-Math-RL-Verified') |
|
dataset = dataset.rename_column('answer', 'solution') |
|
elif args.train_set == 'deepscaler': |
|
dataset = datasets.load_dataset('agentica-org/DeepScaleR-Preview-Dataset') |
|
dataset = dataset.remove_columns(['solution']) |
|
dataset = dataset.rename_column('answer', 'solution') |
|
elif args.train_set == 'dapo': |
|
remove_string = "Solve the following math problem step by step. The last line of your response should be of the form Answer: $Answer (without quotes) where $Answer is the answer to the problem.\n\n" |
|
remove_string_2 = "\n\nRemember to put your answer on its own line after \"Answer:\"." |
|
dataset = datasets.load_dataset('YouJiacheng/DAPO-Math-17k-dedup') |
|
dataset = dataset.map(lambda x: {'problem': x['prompt'][0]['content'].replace(remove_string, '').replace(remove_string_2, '').strip(), 'solution': x['reward_model']['ground_truth']}) |
|
else: |
|
raise ValueError(f"Invalid train_set: {args.train_set}") |
|
|
|
if not args.test_only: |
|
train_dataset = dataset['train'] |
|
train_dataset = train_dataset.add_column('data_source', [args.train_set] * len(train_dataset)) |
|
if args.filter_key is not None and args.filter_value is not None: |
|
train_dataset = train_dataset.filter(lambda x: x[args.filter_key] == args.filter_value) |
|
train_dataset = train_dataset.remove_columns([k for k in train_dataset.column_names if k not in ['problem', 'solution', 'data_source']]) |
|
|
|
test_datasources = glob('data/*.jsonl') |
|
test_datasets = [] |
|
for test_datasource in test_datasources: |
|
if 'seed_io' in test_datasource or 'MbppPlus' in test_datasource or 'HumanEvalPlus' in test_datasource: |
|
continue |
|
temp_ds = datasets.load_dataset('json', data_files=test_datasource, split='train') |
|
if 'question' in temp_ds.column_names and 'problem' not in temp_ds.column_names: |
|
temp_ds = temp_ds.rename_column('question', 'problem') |
|
temp_ds = temp_ds.remove_columns([col for col in temp_ds.column_names if col not in ['problem', 'answer']]) |
|
temp_ds = temp_ds.add_column('data_source', [test_datasource.split('/')[-1].split('.')[0]] * len(temp_ds)) |
|
temp_ds = temp_ds.cast_column('problem', datasets.Value('string')) |
|
temp_ds = temp_ds.cast_column('answer', datasets.Value('string')) |
|
temp_ds = temp_ds.cast_column('data_source', datasets.Value('string')) |
|
test_datasets.append(temp_ds) |
|
live_math_bench_datasets = ['v202412_AMC_en', 'v202412_CCEE_en', 'v202412_CNMO_en', 'v202412_WLPMC_en', 'v202412_hard_en'] |
|
for dataset_name in live_math_bench_datasets: |
|
live_math_bench_ds = datasets.load_dataset('opencompass/LiveMathBench', dataset_name)['test'] |
|
live_math_bench_ds = live_math_bench_ds.rename_column('question', 'problem') |
|
live_math_bench_ds = live_math_bench_ds.remove_columns([col for col in live_math_bench_ds.column_names if col not in ['problem', 'answer']]) |
|
live_math_bench_ds = live_math_bench_ds.add_column('data_source', ['live_math_bench'] * len(live_math_bench_ds)) |
|
test_datasets.append(live_math_bench_ds) |
|
test_dataset = datasets.concatenate_datasets(test_datasets) |
|
|
|
if not args.test_only: |
|
train_dataset = train_dataset.map( |
|
function=make_map_fn(args.train_split_key, 'problem', 'solution', args.train_set == 'math', args.reward_fn_extraction_type, args.nothink), |
|
with_indices=True, num_proc=16, |
|
) |
|
test_dataset = test_dataset.map( |
|
function=make_map_fn(args.eval_split_key, 'problem', 'answer', False, args.reward_fn_extraction_type, args.nothink), |
|
with_indices=True, num_proc=16, |
|
) |
|
|
|
if args.length_limit != -1 and not args.test_only: |
|
train_dataset = train_dataset.select(range(args.length_limit)) |
|
test_dataset = test_dataset.select(range(args.length_limit)) |
|
|
|
local_dir = args.local_dir + f'/{args.train_set}{"_nothink" if args.nothink else ""}' |
|
hdfs_dir = args.hdfs_dir |
|
|
|
if args.filter_key is not None: |
|
filter_key = f"_{args.filter_key}_{args.filter_value}" |
|
else: |
|
filter_key = "" |
|
|
|
if not args.test_only: |
|
train_dataset.to_parquet(os.path.join(local_dir, f'train_{args.reward_fn_extraction_type}{"" if args.length_limit == -1 else f"_{args.length_limit}"}{filter_key}.parquet')) |
|
test_dataset.to_parquet(os.path.join(local_dir, f'test_{args.reward_fn_extraction_type}{"_ood" if args.ood_testsets else ""}{"" if args.length_limit == -1 else f"_{args.length_limit}"}{filter_key}.parquet')) |
|
|
|
if hdfs_dir is not None: |
|
makedirs(hdfs_dir) |
|
|
|
copy(src=local_dir, dst=hdfs_dir) |
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--local_dir', default='data') |
|
parser.add_argument( |
|
'--reward_fn_extraction_type', |
|
default='answer', |
|
choices=['answer', 'boxed', 'none'] |
|
) |
|
parser.add_argument('--length_limit', default=-1, type=int) |
|
parser.add_argument('--hdfs_dir', default=None) |
|
parser.add_argument('--train_set', default='math', choices=['math', 'orz', 'simplerl', 'big_math', 'deepscaler', 'dapo']) |
|
parser.add_argument('--test_only', default=False, action='store_true') |
|
parser.add_argument('--train_split_key', default='train', type=str) |
|
parser.add_argument('--eval_split_key', default='test', type=str) |
|
parser.add_argument('--filter_key', default=None, type=str) |
|
parser.add_argument('--filter_value', default=None, type=str) |
|
parser.add_argument('--nothink', default=False, action='store_true') |
|
|
|
args = parser.parse_args() |
|
print(args) |
|
|
|
process_data(args) |