Upload README.md
Browse files
README.md
CHANGED
@@ -1,61 +1,39 @@
|
|
1 |
-
---
|
2 |
-
library_name: hivex
|
3 |
-
original_train_name: DroneBasedReforestation_difficulty_5_task_6_run_id_1_train
|
4 |
-
tags:
|
5 |
-
- hivex
|
6 |
-
- hivex-drone-based-reforestation
|
7 |
-
- reinforcement-learning
|
8 |
-
- multi-agent-reinforcement-learning
|
9 |
-
model-index:
|
10 |
-
- name: hivex-DBR-PPO-baseline-task-6-difficulty-5
|
11 |
-
results:
|
12 |
-
- task:
|
13 |
-
type: sub-task
|
14 |
-
name: explore_furthest_distance_and_return_to_base
|
15 |
-
task-id: 6
|
16 |
-
difficulty-id: 5
|
17 |
-
dataset:
|
18 |
-
name: hivex-drone-based-reforestation
|
19 |
-
type: hivex-drone-based-reforestation
|
20 |
-
metrics:
|
21 |
-
- type:
|
22 |
-
value:
|
23 |
-
name:
|
24 |
-
verified: true
|
25 |
-
- type:
|
26 |
-
value: 0.
|
27 |
-
name:
|
28 |
-
verified: true
|
29 |
-
- type:
|
30 |
-
value:
|
31 |
-
name:
|
32 |
-
verified: true
|
33 |
-
- type:
|
34 |
-
value:
|
35 |
-
name:
|
36 |
-
verified: true
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
verified: true
|
41 |
-
- type: cumulative_tree_drop_reward
|
42 |
-
value: 0.0 +/- 0.0
|
43 |
-
name: "Cumulative Tree Drop Reward"
|
44 |
-
verified: true
|
45 |
-
- type: furthest_distance_explored
|
46 |
-
value: 137.37953353881835 +/- 12.615748983046979
|
47 |
-
name: "Furthest Distance Explored"
|
48 |
-
verified: true
|
49 |
-
- type: out_of_energy_count
|
50 |
-
value: 0.6040635073184967 +/- 0.08043410811022636
|
51 |
-
name: "Out of Energy Count"
|
52 |
-
verified: true
|
53 |
-
- type: recharge_energy_count
|
54 |
-
value: 106.3367606653273 +/- 119.63729576848576
|
55 |
-
name: "Recharge Energy Count"
|
56 |
-
verified: true
|
57 |
-
- type: tree_drop_count
|
58 |
-
value: 0.0 +/- 0.0
|
59 |
-
name: "Tree Drop Count"
|
60 |
-
verified: true
|
61 |
-
---
|
|
|
1 |
+
---
|
2 |
+
library_name: hivex
|
3 |
+
original_train_name: DroneBasedReforestation_difficulty_5_task_6_run_id_1_train
|
4 |
+
tags:
|
5 |
+
- hivex
|
6 |
+
- hivex-drone-based-reforestation
|
7 |
+
- reinforcement-learning
|
8 |
+
- multi-agent-reinforcement-learning
|
9 |
+
model-index:
|
10 |
+
- name: hivex-DBR-PPO-baseline-task-6-difficulty-5
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: sub-task
|
14 |
+
name: explore_furthest_distance_and_return_to_base
|
15 |
+
task-id: 6
|
16 |
+
difficulty-id: 5
|
17 |
+
dataset:
|
18 |
+
name: hivex-drone-based-reforestation
|
19 |
+
type: hivex-drone-based-reforestation
|
20 |
+
metrics:
|
21 |
+
- type: furthest_distance_explored
|
22 |
+
value: 137.37953353881835 +/- 12.615748983046979
|
23 |
+
name: Furthest Distance Explored
|
24 |
+
verified: true
|
25 |
+
- type: out_of_energy_count
|
26 |
+
value: 0.6040635073184967 +/- 0.08043410811022636
|
27 |
+
name: Out of Energy Count
|
28 |
+
verified: true
|
29 |
+
- type: recharge_energy_count
|
30 |
+
value: 106.3367606653273 +/- 119.63729576848576
|
31 |
+
name: Recharge Energy Count
|
32 |
+
verified: true
|
33 |
+
- type: cumulative_reward
|
34 |
+
value: 3.9467455238103866 +/- 4.488707334085729
|
35 |
+
name: Cumulative Reward
|
36 |
+
verified: true
|
37 |
+
---
|
38 |
+
|
39 |
+
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>6</code> with difficulty <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>6</code><br>Difficulty: <code>5</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|