indic_trans2 / convert_indictrans_checkpoint_to_pytorch.py
pavanhitloop's picture
codebase added
9d452e1
raw
history blame
3.94 kB
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
import torch.nn as nn
from configuration_indictrans import IndicTransConfig
from modeling_indictrans import IndicTransForConditionalGeneration
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(k, None)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.data
return lin_layer
def convert_fairseq_IT2_checkpoint_from_disk(checkpoint_path):
model = torch.load(checkpoint_path, map_location="cpu")
args = model["args"] or model["cfg"]["model"]
state_dict = model["model"]
remove_ignore_keys_(state_dict)
encoder_vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0]
decoder_vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0]
config = IndicTransConfig(
encoder_vocab_size=encoder_vocab_size,
decoder_vocab_size=decoder_vocab_size,
max_source_positions=args.max_source_positions,
max_target_positions=args.max_target_positions,
encoder_layers=args.encoder_layers,
decoder_layers=args.decoder_layers,
layernorm_embedding=args.layernorm_embedding,
encoder_normalize_before=args.encoder_normalize_before,
decoder_normalize_before=args.decoder_normalize_before,
encoder_attention_heads=args.encoder_attention_heads,
decoder_attention_heads=args.decoder_attention_heads,
encoder_ffn_dim=args.encoder_ffn_embed_dim,
decoder_ffn_dim=args.decoder_ffn_embed_dim,
encoder_embed_dim=args.encoder_embed_dim,
decoder_embed_dim=args.decoder_embed_dim,
encoder_layerdrop=args.encoder_layerdrop,
decoder_layerdrop=args.decoder_layerdrop,
dropout=args.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_function=args.activation_fn,
share_decoder_input_output_embed=args.share_decoder_input_output_embed,
scale_embedding=not args.no_scale_embedding,
)
model = IndicTransForConditionalGeneration(config)
model.model.load_state_dict(state_dict, strict=False)
if not args.share_decoder_input_output_embed:
model.lm_head = make_linear_from_emb(
state_dict["decoder.output_projection.weight"]
)
print(model)
return model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
default="indic-en/model/checkpoint_best.pt",
type=str,
help="path to a model.pt on local filesystem.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="indic-en/hf_model",
type=str,
help="Path to the output PyTorch model.",
)
args = parser.parse_args()
model = convert_fairseq_IT2_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)