hiroshi-matsuda-rit's picture
Update spaCy pipeline
776c495
[paths]
train = "corpus/ja_gsd-ud-train.ne.spacy"
dev = "corpus/ja_gsd-ud-dev.ne.spacy"
vectors = null
init_tok2vec = null
[system]
gpu_allocator = "pytorch"
seed = 0
[nlp]
lang = "ja"
pipeline = ["transformer","parser","ner"]
batch_size = 128
disabled = []
before_creation = null
after_creation = null
after_pipeline_creation = null
[nlp.tokenizer]
@tokenizers = "spacy.ja.JapaneseTokenizer"
split_mode = "A"
[components]
[components.ner]
factory = "ner"
incorrect_spans_key = null
moves = null
update_with_oracle_cut_size = 100
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "ner"
extra_state_tokens = false
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.parser]
factory = "parser"
learn_tokens = false
min_action_freq = 30
moves = null
update_with_oracle_cut_size = 100
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v2"
state_type = "parser"
extra_state_tokens = false
hidden_width = 128
maxout_pieces = 3
use_upper = false
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
pooling = {"@layers":"reduce_mean.v1"}
upstream = "*"
[components.transformer]
factory = "transformer"
max_batch_items = 4096
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"}
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v1"
name = "cl-tohoku/bert-base-japanese-whole-word-masking"
[components.transformer.model.get_spans]
@span_getters = "spacy-transformers.strided_spans.v1"
window = 128
stride = 96
[components.transformer.model.tokenizer_config]
use_fast = false
[components.transformer.model.tokenizer_config.mecab_kwargs]
mecab_dic = "unidic_lite"
[corpora]
[corpora.dev]
@readers = "spacy.Corpus.v1"
path = ${paths.dev}
max_length = 0
gold_preproc = false
limit = 0
augmenter = null
[corpora.train]
@readers = "spacy.Corpus.v1"
path = ${paths.train}
max_length = 500
gold_preproc = false
limit = 0
augmenter = null
[training]
accumulate_gradient = 3
dev_corpus = "corpora.dev"
train_corpus = "corpora.train"
seed = ${system.seed}
gpu_allocator = ${system.gpu_allocator}
dropout = 0.1
patience = 0
max_epochs = 0
max_steps = 20000
eval_frequency = 200
frozen_components = []
before_to_disk = null
annotating_components = []
[training.batcher]
@batchers = "spacy.batch_by_padded.v1"
discard_oversize = true
size = 2000
buffer = 256
get_length = null
[training.logger]
@loggers = "spacy.WandbLogger.v2"
project_name = "ja_spacy_bert_wwm_unidic_lite"
remove_config_values = ["paths.train","paths.dev","corpora.train.path","corpora.dev.path"]
log_dataset_dir = "./corpus"
model_log_interval = 200
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 0.00000001
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 0.00005
[training.score_weights]
dep_uas = 0.17
dep_las = 0.17
dep_las_per_type = null
sents_p = null
sents_r = null
sents_f = 0.0
ents_f = 0.33
ents_p = 0.0
ents_r = 0.0
ents_per_type = null
tag_acc = 0.33
[pretraining]
[initialize]
vectors = null
init_tok2vec = ${paths.init_tok2vec}
vocab_data = null
lookups = null
before_init = null
after_init = null
[initialize.components]
[initialize.tokenizer]