hiroshi-matsuda-rit
commited on
Commit
·
c9d0124
1
Parent(s):
289209d
initial commit
Browse files- README.md +67 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +11 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,70 @@
|
|
1 |
---
|
|
|
2 |
license: mit
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: ja
|
3 |
license: mit
|
4 |
+
datasets:
|
5 |
+
- mC4-ja
|
6 |
---
|
7 |
+
|
8 |
+
# electra-base-japanese-discriminator (sudachitra-wordpiece, mC4 Japanese) - [SHINOBU](https://dl.ndl.go.jp/info:ndljp/pid/1302683/3)
|
9 |
+
|
10 |
+
This is an [ELECTRA](https://github.com/google-research/electra) model pretrained on approximately 200M Japanese sentences.
|
11 |
+
|
12 |
+
The input text is tokenized by [SudachiTra](https://github.com/WorksApplications/SudachiTra) with the WordPiece subword tokenizer.
|
13 |
+
See `tokenizer_config.json` for the setting details.
|
14 |
+
|
15 |
+
## How to use
|
16 |
+
|
17 |
+
Please install `SudachiTra` in advance.
|
18 |
+
|
19 |
+
```console
|
20 |
+
$ pip install -U torch transformers sudachitra
|
21 |
+
```
|
22 |
+
|
23 |
+
You can load the model and the tokenizer via AutoModel and AutoTokenizer, respectively.
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoModel, AutoTokenizer
|
27 |
+
model = AutoModel.from_pretrained("megagonlabs/electra-base-japanese-discriminator")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("megagonlabs/electra-base-japanese-discriminator", trust_remote_code=True)
|
29 |
+
model(**tokenizer("まさにオールマイティーな商品だ。", return_tensors="pt")).last_hidden_state
|
30 |
+
tensor([[[-0.0498, -0.0285, 0.1042, ..., 0.0062, -0.1253, 0.0338],
|
31 |
+
[-0.0686, 0.0071, 0.0087, ..., -0.0210, -0.1042, -0.0320],
|
32 |
+
[-0.0636, 0.1465, 0.0263, ..., 0.0309, -0.1841, 0.0182],
|
33 |
+
...,
|
34 |
+
[-0.1500, -0.0368, -0.0816, ..., -0.0303, -0.1653, 0.0650],
|
35 |
+
[-0.0457, 0.0770, -0.0183, ..., -0.0108, -0.1903, 0.0694],
|
36 |
+
[-0.0981, -0.0387, 0.1009, ..., -0.0150, -0.0702, 0.0455]]],
|
37 |
+
grad_fn=<NativeLayerNormBackward>)
|
38 |
+
```
|
39 |
+
|
40 |
+
## Model architecture
|
41 |
+
|
42 |
+
The model architecture is the same as the original ELECTRA base model; 12 layers, 768 dimensions of hidden states, and 12 attention heads.
|
43 |
+
|
44 |
+
## Training data and libraries
|
45 |
+
|
46 |
+
This model is trained on the Japanese texts extracted from the [mC4](https://huggingface.co/datasets/mc4) Common Crawl's multilingual web crawl corpus.
|
47 |
+
We used the [Sudachi](https://github.com/WorksApplications/Sudachi) to split texts into sentences, and also applied a simple rule-based filter to remove nonlinguistic segments of mC4 multilingual corpus.
|
48 |
+
The extracted texts contains over 600M sentences in total, and we used approximately 200M sentences for pretraining.
|
49 |
+
|
50 |
+
We used [NVIDIA's TensorFlow2-based ELECTRA implementation](https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow2/LanguageModeling/ELECTRA) for pretraining. The time required for the pretrainig was about 110 hours using GCP DGX A100 8gpu instance with enabling Automatic Mixed Precision.
|
51 |
+
|
52 |
+
## Licenses
|
53 |
+
|
54 |
+
The pretrained models are distributed under the terms of the [MIT License](https://opensource.org/licenses/mit-license.php).
|
55 |
+
|
56 |
+
## Citations
|
57 |
+
|
58 |
+
- mC4
|
59 |
+
|
60 |
+
Contains information from `mC4` which is made available under the [ODC Attribution License](https://opendatacommons.org/licenses/by/1-0/).
|
61 |
+
```
|
62 |
+
@article{2019t5,
|
63 |
+
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
|
64 |
+
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
|
65 |
+
journal = {arXiv e-prints},
|
66 |
+
year = {2019},
|
67 |
+
archivePrefix = {arXiv},
|
68 |
+
eprint = {1910.10683},
|
69 |
+
}
|
70 |
+
```
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ElectraForPreTraining"
|
4 |
+
],
|
5 |
+
"model_type": "electra",
|
6 |
+
"model_name": "base",
|
7 |
+
"vocab_size": 30112,
|
8 |
+
"embedding_size": 768,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"num_hidden_layers": 12,
|
11 |
+
"num_attention_heads": 12,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.1,
|
15 |
+
"attention_probs_dropout_prob": 0.1,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"type_vocab_size": 2,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"summary_type": "first",
|
21 |
+
"summary_use_proj": true,
|
22 |
+
"summary_activation": "gelu",
|
23 |
+
"summary_last_dropout": 0.1,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute"
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4412201f4146092b562f92ec0ea5be3ad697cd0c83c4817a5ea411375900cd9
|
3 |
+
size 436755117
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
3 |
+
"do_lower_case": false,
|
4 |
+
"do_word_tokenize": true,
|
5 |
+
"do_subword_tokenize": true,
|
6 |
+
"word_tokenizer_type": "sudachi",
|
7 |
+
"subword_tokenizer_type": "wordpiece",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"sudachi_kwargs": {"sudachi_split_mode":"A","sudachi_dict_type":"core"}
|
10 |
+
}
|
11 |
+
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|