Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- imdb
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: transformers
|
7 |
+
pipeline_tag: text-classification
|
8 |
+
tags:
|
9 |
+
- movies
|
10 |
+
- gpt2
|
11 |
+
- sentiment-analysis
|
12 |
+
- fine-tuned
|
13 |
+
---
|
14 |
+
|
15 |
+
# Fine-tuned GPT-2 Model for IMDb Movie Review Sentiment Analysis
|
16 |
+
|
17 |
+
## Model Description
|
18 |
+
|
19 |
+
This is a GPT-2 model fine-tuned on the IMDb movie review dataset for sentiment analysis. It classifies a movie review text into two classes: "positive" or "negative".
|
20 |
+
|
21 |
+
## Intended Uses & Limitations
|
22 |
+
|
23 |
+
This model is intended to be used for binary sentiment analysis of English movie reviews. It can determine whether a review is positive or negative. It should not be used for languages other than English, or for text with ambiguous sentiment.
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
Here's a simple way to use this model:
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import GPT2Tokenizer, GPT2ForSequenceClassification
|
31 |
+
|
32 |
+
tokenizer = GPT2Tokenizer.from_pretrained("hipnologo/gpt2-imdb-finetune")
|
33 |
+
model = GPT2ForSequenceClassification.from_pretrained("hipnologo/gpt2-imdb-finetune")
|
34 |
+
|
35 |
+
text = "Your review text here!"
|
36 |
+
|
37 |
+
# encoding the input text
|
38 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
39 |
+
|
40 |
+
# Move the input_ids tensor to the same device as the model
|
41 |
+
input_ids = input_ids.to(model.device)
|
42 |
+
|
43 |
+
# getting the logits
|
44 |
+
logits = model(input_ids).logits
|
45 |
+
|
46 |
+
# getting the predicted class
|
47 |
+
predicted_class = logits.argmax(-1).item()
|
48 |
+
|
49 |
+
print(f"The sentiment predicted by the model is: {'Positive' if predicted_class == 1 else 'Negative'}")
|
50 |
+
```
|
51 |
+
|
52 |
+
## Training Procedure
|
53 |
+
The model was trained using the 'Trainer' class from the transformers library, with a learning rate of 2e-5, batch size of 1, and 3 training epochs.
|
54 |
+
|
55 |
+
## Fine-tuning Details
|
56 |
+
The model was fine-tuned using the IMDb movie review dataset.
|
57 |
+
|