highdeff1 / run train.py
highdeff's picture
Upload 16 files
2c07569
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
# Define the path to your questions file
questions_file = 'C:\\Users\\money\\OneDrive\\Pictures\\Blank Model\\untrained\\New folder (3)\\questions.txt'
# Load your data from the questions file
with open(questions_file, 'r') as f:
questions = f.read().splitlines()
# Define your custom tokenizer
def custom_tokenizer(text):
"""
Define your custom tokenizer function here
"""
return text.split()
# Tokenize your questions
tokenized_questions = [custom_tokenizer(question) for question in questions]
# Load your custom model
model = AutoModelForSeq2SeqLM.from_pretrained('C:\\Users\\money\\OneDrive\\Pictures\\Blank Model\\untrained model.pt')
# Define the training arguments
training_args = TrainingArguments(
output_dir='./results',
evaluation_strategy='epoch',
learning_rate=2e-4,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=1,
weight_decay=0.01,
)
# Define the trainer and train the model
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_questions,
)
trainer.train()
# Save the trained model
model_path = './trained_model'
model.save_pretrained(model_path)