hieule's picture
first commit
404a789
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a76903790>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a76903820>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a769038b0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a76903940>",
"_build": "<function ActorCriticPolicy._build at 0x7f5a769039d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f5a76903a60>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a76903af0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a76903b80>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f5a76903c10>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a76903ca0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a76903d30>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a76903dc0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f5a768fd960>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 1015808,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1673860862374882323,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrgND1c02W61upyur55YbWx5Ww6TayOOQAAgD8AAIA/APChvVzLXrpKZCE8sc+ltvy8NznA7Zu1AACAPwAAAAAzS8y89mA8uioh47oRo322gG1qOxbjAzoAAIA/AACAP7N7pj32NEG6VmxUu+2uaTXR1rk3G9rNtAAAAAAAAIA/ze2zveFmh7rSi7I7hVlFOMAaKjsD+Wu4AACAPwAAgD9zVrk97JG1uYrUczgR3X8yGpMDO0Qoj7cAAIA/AACAPyYhpz0fvc25BjAqOBeAGjPjmve5QbtFtwAAgD8AAIA/M3NYOikIXbp4Bn655Ph6tOqUQjmLTpU4AACAPwAAgD9NWWw9iWm2PzuMMT8aeWe8XHexvOhPjD0AAAAAAAAAAJqtuj17+pm6UWy6Ow4IyzcYRmo6I5unNQAAgD8AAIA/DfqbPcONcbq/4Rc7G7RMOMgoLTsaWra5AACAPwAAgD9ActW9FveKP6KNP77EPra+g9JZvgDfZb0AAAAAAAAAAJrhB71IS4S6+hFTO1RWLDfJGMW6Yxg0ugAAgD8AAIA/ZpYCPRSgl7ojVeG69+PKtTSjjDmCmQE6AACAPwAAgD8mHrQ9e4aSujazaztvIeY1ftO7ul09iLoAAIA/AACAPwCstDspxFK6Trl/Ol6qJzTrFGw7ufiTuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.015808000000000044,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRGraxTTLNkCUhpRSlIwBbJRL54wBdJRHQI94zedkJ8h1fZQoaAZoCWgPQwj9aDhlbsFgQJSGlFKUaBVN6ANoFkdAj3+buMMqjXV9lChoBmgJaA9DCE/mH32T0GZAlIaUUpRoFU3oA2gWR0CPiCgctGutdX2UKGgGaAloD0MI3pOHhdqpYkCUhpRSlGgVTegDaBZHQI+ObTz/ZNB1fZQoaAZoCWgPQwijW6/pQexkQJSGlFKUaBVN6ANoFkdAj5DFcY64lXV9lChoBmgJaA9DCOM1r+qsG2JAlIaUUpRoFU3oA2gWR0CPm2gq3EyddX2UKGgGaAloD0MIwqG3eHirZkCUhpRSlGgVTegDaBZHQI+c1JQLux91fZQoaAZoCWgPQwi5xmeyf49dQJSGlFKUaBVN6ANoFkdAj6BHeaa1C3V9lChoBmgJaA9DCFLuPsfHuGNAlIaUUpRoFU3oA2gWR0CPpEnw5NoKdX2UKGgGaAloD0MIGeYEbfI6ZkCUhpRSlGgVTegDaBZHQI+pCYmb9ZR1fZQoaAZoCWgPQwjB4Jo7+iM/QJSGlFKUaBVL0GgWR0CPtSjXWe6JdX2UKGgGaAloD0MI6QyMvKx7YkCUhpRSlGgVTegDaBZHQI+53NNahYh1fZQoaAZoCWgPQwg+527XSzhlQJSGlFKUaBVN6ANoFkdAj8B3d0q6OHV9lChoBmgJaA9DCJ88LNQaJWRAlIaUUpRoFU3oA2gWR0CPwLFAE+xGdX2UKGgGaAloD0MIgSbChieJZkCUhpRSlGgVTegDaBZHQI/DlFnZkCp1fZQoaAZoCWgPQwiLUkKwqlplQJSGlFKUaBVN6ANoFkdAj9kgU+LWJHV9lChoBmgJaA9DCBniWBc3cWRAlIaUUpRoFU3oA2gWR0CQAcDujRD1dX2UKGgGaAloD0MIu9QI/cwSZECUhpRSlGgVTegDaBZHQJAElsj3VTd1fZQoaAZoCWgPQwi8zRsnhfxlQJSGlFKUaBVN6ANoFkdAkAdhPbfxc3V9lChoBmgJaA9DCFsHB3uT/GdAlIaUUpRoFU3oA2gWR0CQCubtZ3cIdX2UKGgGaAloD0MIoz1eSIfuW0CUhpRSlGgVTegDaBZHQJANlUm2LHd1fZQoaAZoCWgPQwjf/lw05G5lQJSGlFKUaBVN6ANoFkdAkA6dAs052nV9lChoBmgJaA9DCJw24zREw2NAlIaUUpRoFU3oA2gWR0CQE1k/KQq7dX2UKGgGaAloD0MIC0J5H0f2aUCUhpRSlGgVTegDaBZHQJAUAM6RyOt1fZQoaAZoCWgPQwjBcoQM5KJkQJSGlFKUaBVN6ANoFkdAkBeth/iHZnV9lChoBmgJaA9DCAZJn1ZRwHJAlIaUUpRoFU26AWgWR0CQF9de6ZpjdX2UKGgGaAloD0MI8KXwoFkxYECUhpRSlGgVTegDaBZHQJAaDw7T2Fp1fZQoaAZoCWgPQwifk943vkJmQJSGlFKUaBVN6ANoFkdAkCA7Qswta3V9lChoBmgJaA9DCK4s0Vnmk2ZAlIaUUpRoFU3oA2gWR0CQIpt/nW8RdX2UKGgGaAloD0MIATJ07CCOZECUhpRSlGgVTegDaBZHQJAl+89Oh011fZQoaAZoCWgPQwgt6pPc4bxjQJSGlFKUaBVN6ANoFkdAkCYYH9m6G3V9lChoBmgJaA9DCCdPWU1XQmFAlIaUUpRoFU3oA2gWR0CQJ5u14Pf9dX2UKGgGaAloD0MI9DY2O9JzYUCUhpRSlGgVTegDaBZHQJAzOM5wOvt1fZQoaAZoCWgPQwhBgAwdO3pjQJSGlFKUaBVN6ANoFkdAkEvDKcNH6XV9lChoBmgJaA9DCI7O+SmO03FAlIaUUpRoFU3KA2gWR0CQTSCpm29ddX2UKGgGaAloD0MIoZ3TLFDNZECUhpRSlGgVTegDaBZHQJBS5wZOzpp1fZQoaAZoCWgPQwi7Cik/KWBhQJSGlFKUaBVN6ANoFkdAkFWvMW43FXV9lChoBmgJaA9DCH0+yoiLO2NAlIaUUpRoFU3oA2gWR0CQVrnaWX1KdX2UKGgGaAloD0MIW9O845R7ZECUhpRSlGgVTegDaBZHQJBbZsQ/X5F1fZQoaAZoCWgPQwjsavKU1dBgQJSGlFKUaBVN6ANoFkdAkFwIfW+XaHV9lChoBmgJaA9DCAzohTsXXWhAlIaUUpRoFU3oA2gWR0CQX6sWfseGdX2UKGgGaAloD0MIhbAaS1hWaECUhpRSlGgVTegDaBZHQJBf1GQSzxB1fZQoaAZoCWgPQwgBwocSrXhmQJSGlFKUaBVN6ANoFkdAkGH59ZzPr3V9lChoBmgJaA9DCLKbGf1ov2BAlIaUUpRoFU3oA2gWR0CQZ/vovBacdX2UKGgGaAloD0MI/BnerEFYZUCUhpRSlGgVTegDaBZHQJBqTutwJgN1fZQoaAZoCWgPQwjkFYieFGZnQJSGlFKUaBVN6ANoFkdAkG2ShJyyU3V9lChoBmgJaA9DCCMw1jew7WRAlIaUUpRoFU3oA2gWR0CQba9IwudxdX2UKGgGaAloD0MImBQfnxBUZECUhpRSlGgVTegDaBZHQJBvN9Vmz0J1fZQoaAZoCWgPQwg/rDdqhYNlQJSGlFKUaBVN6ANoFkdAkHrIacZtN3V9lChoBmgJaA9DCDp4JjTJFGRAlIaUUpRoFU3oA2gWR0CQlB71ZkkKdX2UKGgGaAloD0MIorQ3+EKXYkCUhpRSlGgVTegDaBZHQJCVmkrPMSt1fZQoaAZoCWgPQwjaAdcVM5xKQJSGlFKUaBVLxGgWR0CQme+VTrE+dX2UKGgGaAloD0MItU5cjtc0YkCUhpRSlGgVTegDaBZHQJCbMpRXOnl1fZQoaAZoCWgPQwgc8PlhBJVmQJSGlFKUaBVN6ANoFkdAkJ5IeHSF5HV9lChoBmgJaA9DCGeeXFOgoWBAlIaUUpRoFU3oA2gWR0CQn3HYYixFdX2UKGgGaAloD0MIlUVhF8UoYkCUhpRSlGgVTegDaBZHQJCk1Ge+VTt1fZQoaAZoCWgPQwh4tdyZCTNmQJSGlFKUaBVN6ANoFkdAkKWMdHUc43V9lChoBmgJaA9DCEaYolwaYmZAlIaUUpRoFU3oA2gWR0CQqVCgbp/xdX2UKGgGaAloD0MIFy1A22oAaUCUhpRSlGgVTegDaBZHQJCpegHu7Yl1fZQoaAZoCWgPQwgc0NIV7HtgQJSGlFKUaBVN6ANoFkdAkKuxMFlkH3V9lChoBmgJaA9DCFkzMshdkWZAlIaUUpRoFU3oA2gWR0CQsc31zySWdX2UKGgGaAloD0MIJZF9kOW5ZECUhpRSlGgVTegDaBZHQJC0Nx0dRzl1fZQoaAZoCWgPQwhXmL7XkNVxQJSGlFKUaBVNywNoFkdAkLXvbj94vHV9lChoBmgJaA9DCIdT5uYbP2VAlIaUUpRoFU3oA2gWR0CQt5TPjXFtdX2UKGgGaAloD0MI/Io1XCRBcUCUhpRSlGgVTdEBaBZHQJC350ZFXq91fZQoaAZoCWgPQwieew+XHBdkQJSGlFKUaBVN6ANoFkdAkLkL961LJ3V9lChoBmgJaA9DCB1znrEv02JAlIaUUpRoFU3oA2gWR0CQ3dUKRdQgdX2UKGgGaAloD0MIcvvlk5X6Y0CUhpRSlGgVTegDaBZHQJDfakXUH6d1fZQoaAZoCWgPQwiq9BPOboBjQJSGlFKUaBVN6ANoFkdAkORIEnssx3V9lChoBmgJaA9DCJet9UVCn2ZAlIaUUpRoFU3oA2gWR0CQ5ZygPEsKdX2UKGgGaAloD0MILIL/rWRWZECUhpRSlGgVTegDaBZHQJDosyzolld1fZQoaAZoCWgPQwh7Lei9sTJgQJSGlFKUaBVN6ANoFkdAkO76MvRJE3V9lChoBmgJaA9DCBEBh1ClwmVAlIaUUpRoFU3oA2gWR0CQ76uVHFxXdX2UKGgGaAloD0MIcVrwoq99Y0CUhpRSlGgVTegDaBZHQJDzW/j81oB1fZQoaAZoCWgPQwiN0M/U6xliQJSGlFKUaBVN6ANoFkdAkPOC2x6fJ3V9lChoBmgJaA9DCJDdBUqK1GRAlIaUUpRoFU3oA2gWR0CQ9bH7xd6cdX2UKGgGaAloD0MIZoUi3U+pZUCUhpRSlGgVTegDaBZHQJD7XHcUM5R1fZQoaAZoCWgPQwjWARB3dYZhQJSGlFKUaBVN6ANoFkdAkP2afe1rqXV9lChoBmgJaA9DCKDejJoveWdAlIaUUpRoFU3oA2gWR0CQ/0GSIP9UdX2UKGgGaAloD0MIiSXl7vMfZUCUhpRSlGgVTegDaBZHQJEA1T5wfhd1fZQoaAZoCWgPQwipZ0Eo7w1mQJSGlFKUaBVN6ANoFkdAkQEdnCfpU3V9lChoBmgJaA9DCOc1donqUGJAlIaUUpRoFU3oA2gWR0CRAjy5I6KcdX2UKGgGaAloD0MI9dbAVgk2Y0CUhpRSlGgVTegDaBZHQJESpSXMQmN1fZQoaAZoCWgPQwg4u7VMBgxhQJSGlFKUaBVN6ANoFkdAkSeFvybx3HV9lChoBmgJaA9DCA1v1uB9TGZAlIaUUpRoFU3oA2gWR0CRLamjj7yhdX2UKGgGaAloD0MIPgeWI2TwYECUhpRSlGgVTegDaBZHQJEvVsYVIqd1fZQoaAZoCWgPQwgl6gWfZq1hQJSGlFKUaBVN6ANoFkdAkTNY9X9zfnV9lChoBmgJaA9DCDtxOV6B0WFAlIaUUpRoFU3oA2gWR0CROvtHxz7udX2UKGgGaAloD0MIBi6PNaNFZECUhpRSlGgVTegDaBZHQJE7qJxeb/h1fZQoaAZoCWgPQwgnF2NgHX9lQJSGlFKUaBVN6ANoFkdAkT9y619fC3V9lChoBmgJaA9DCC/gZYYNimdAlIaUUpRoFU3oA2gWR0CRP5vHcUM5dX2UKGgGaAloD0MITWa8rXSaZ0CUhpRSlGgVTegDaBZHQJFBz8CPp6h1fZQoaAZoCWgPQwgGY0Si0KFhQJSGlFKUaBVN6ANoFkdAkUe6dpZfUnV9lChoBmgJaA9DCNU9srlqX2dAlIaUUpRoFU3oA2gWR0CRSfGCqZMMdX2UKGgGaAloD0MIhLpIoSzXaECUhpRSlGgVTegDaBZHQJFLlA/s3Q51fZQoaAZoCWgPQwgY7lwYaRhhQJSGlFKUaBVN6ANoFkdAkU0euq3mWHV9lChoBmgJaA9DCCo5J/ZQ82RAlIaUUpRoFU3oA2gWR0CRTWbpNbkfdX2UKGgGaAloD0MImL1sO+0IaECUhpRSlGgVTegDaBZHQJFOe/j81oB1fZQoaAZoCWgPQwguOllqvUZhQJSGlFKUaBVN6ANoFkdAkV9qWHDaXnV9lChoBmgJaA9DCHQkl/8Q4WdAlIaUUpRoFU3oA2gWR0CRYO0163RYdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 248,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}