Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-baseline.zip +3 -0
- ppo-LunarLander-baseline/_stable_baselines3_version +1 -0
- ppo-LunarLander-baseline/data +105 -0
- ppo-LunarLander-baseline/policy.optimizer.pth +3 -0
- ppo-LunarLander-baseline/policy.pth +3 -0
- ppo-LunarLander-baseline/pytorch_variables.pth +3 -0
- ppo-LunarLander-baseline/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 140.68 +/- 95.27
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a665f765e10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a665f765ea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a665f765f30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a665f765fc0>", "_build": "<function ActorCriticPolicy._build at 0x7a665f766050>", "forward": "<function ActorCriticPolicy.forward at 0x7a665f7660e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a665f766170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a665f766200>", "_predict": "<function ActorCriticPolicy._predict at 0x7a665f766290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a665f766320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a665f7663b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a665f766440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a665f768780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1700979877577261328, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1SWz6AP/E+bhxdvgTSqr7qsYK869d4PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF5w43m3fAOMAWyUTegDjAF0lEdAmkf5gG8mKXV9lChoBkdAYX7bdrO7hGgHTegDaAhHQJpOZ3u/k/91fZQoaAZHQGERcPWhAW1oB03oA2gIR0CaVNs5n13/dX2UKGgGR0BvE/aDf3vhaAdNQwFoCEdAmlaJTVDrq3V9lChoBkdAbS+YMOPNmmgHTQ8BaAhHQJpX+Jk5IYp1fZQoaAZHQGJ3QY1pCa9oB03oA2gIR0CaXniSJTESdX2UKGgGR0BuMUsUZeiSaAdNRwFoCEdAmmAqgVXV9XV9lChoBkdAbP32lEZzgmgHTSkBaAhHQJpi2Y6XBxh1fZQoaAZHQGHjp3gUDdRoB03oA2gIR0CaaVbSqlxfdX2UKGgGR0BfPUtyxRl6aAdN6ANoCEdAmnGL3TNMXnV9lChoBkdAcHgh9b5dnmgHTVQBaAhHQJpz30cwQDp1fZQoaAZHQGSvw6p5u65oB03oA2gIR0CafCAgPmPpdX2UKGgGR0BjaaRQrMC+aAdN6ANoCEdAmoSB0+1SfnV9lChoBkfAQPT4BV+7UWgHS91oCEdAmoX+AI6bOXV9lChoBkdAZNFGrjo6jmgHTegDaAhHQJqNUPvrnkl1fZQoaAZHQGr5bKA8SwpoB01QAWgIR0CakDfQKKHgdX2UKGgGR0BlJ8dLg4wRaAdN6ANoCEdAmpVadH2AXnV9lChoBkdAbhRFy7wrlWgHTVsDaAhHQJqa/cL0Bfd1fZQoaAZHQGaUdFOO801oB03oA2gIR0CaoVLxI8QqdX2UKGgGR0BfRskt29teaAdN6ANoCEdAmqfLRfF72XV9lChoBkdAa7Pyup0fYGgHTTEBaAhHQJqqhGnXNC91fZQoaAZHQGS6WVu76HloB03oA2gIR0CasP2jfvWpdX2UKGgGR0BpvsvRJEpiaAdNSAFoCEdAmrNNTHbRGHV9lChoBkdAbJIcslLOA2gHTToBaAhHQJq1c7eVLSN1fZQoaAZHQGiWUXpGFzxoB01EAWgIR0CauSU70WdmdX2UKGgGR0A7V4X40uUVaAdL82gIR0Cauv7QLNOedX2UKGgGR0Bj44NZvDP4aAdN6ANoCEdAmsMwg9vCM3V9lChoBkdAZmtXwLE1mGgHTegDaAhHQJrLikvboKV1fZQoaAZHQGvf2M85jpdoB00lAWgIR0CazYNbkfcOdX2UKGgGR0Bjf/pnpSrHaAdN6ANoCEdAmtS9szl90HV9lChoBkdAMOSHdoFmnWgHS+VoCEdAmtX2q5sj3XV9lChoBkdAa16Jswco6WgHTZUBaAhHQJrZLxQSBbx1fZQoaAZHQFznkKeCkGloB03oA2gIR0Ca342mpEQYdX2UKGgGR0BlYWANG3F2aAdN6ANoCEdAmuX/NZ/0/XV9lChoBkdAYbv2OAAhjmgHTegDaAhHQJrsnIikftB1fZQoaAZHQGjblFUhmoRoB01PAWgIR0Ca7mvxYq5LdX2UKGgGR0AjSzByjpLVaAdL32gIR0Ca75U0vXbudX2UKGgGR0Bj3oqPOpsHaAdN6ANoCEdAmvZ4FV1fV3V9lChoBkdAYZi2eg+Ql2gHTegDaAhHQJr+G7K7qY91fZQoaAZHP/1JDVpbliloB0v0aAhHQJr/zG+9Jz11fZQoaAZHQGJxOhkAggZoB03oA2gIR0CbCCARChN/dX2UKGgGR0BcKu9alk6LaAdN6ANoCEdAmxCHIZIg/3V9lChoBkdAEHVMmF8G92gHS9NoCEdAmxHod+5OJ3V9lChoBkdAYuVqhUR3/2gHTegDaAhHQJsZ9TBInSh1fZQoaAZHQFyLcdo371toB03oA2gIR0CbIEH09QoDdX2UKGgGR0BB21MEidJ8aAdL2GgIR0CbIogogFHKdX2UKGgGR0Bj3hYJVsDXaAdN6ANoCEdAmyj/UF0PpnV9lChoBkdAY7s0zCUHIWgHTegDaAhHQJsvTjebd8B1fZQoaAZHQGmljLjghr5oB008AWgIR0CbMP69kBjndX2UKGgGR0BdX8YuTRplaAdN6ANoCEdAmzde+IuXeHV9lChoBkdAYx1foA4n4WgHTegDaAhHQJs9wrK/2011fZQoaAZHQGJAEm6XjVBoB03oA2gIR0CbRXHrQgLadX2UKGgGR0Bq07cbiqACaAdNWQFoCEdAm0fD19ORDHV9lChoBkdAYikYXO4XoGgHTegDaAhHQJtP+kIomXx1fZQoaAZHQGFytt65XltoB03oA2gIR0CbWEgVGkN4dX2UKGgGR0BsO4pDu0CzaAdNEQFoCEdAm1olTR6WxHV9lChoBkdAX8KbAk9lmWgHTegDaAhHQJth/m5lOGl1fZQoaAZHQG0pxRVIZqFoB02MAWgIR0CbZSUJOWSmdX2UKGgGR0Bfdomois4laAdN6ANoCEdAm2uHfl6qsHV9lChoBkdAZI4+GoJiRWgHTegDaAhHQJtxzqiXY151fZQoaAZHQD8tr433pOhoB0vgaAhHQJty9UR3/xV1fZQoaAZHwC4y3VkMCtBoB0vhaAhHQJt0H3ta6jF1fZQoaAZHQGZfbnxJ/XpoB03oA2gIR0CbemJBw++udX2UKGgGR0BhIl8ma6SUaAdN6ANoCEdAm4DOkYXO4XV9lChoBkdAMcC2Dxsl9mgHS9ZoCEdAm4HgQ6IWQHV9lChoBkdAbAZCY1He8GgHTQgBaAhHQJuDQIsyzol1fZQoaAZHQGmKWQnx8UpoB00oAWgIR0Cbhekt29tedX2UKGgGR0BD7lv60pmVaAdL82gIR0CbhywTM7lrdX2UKGgGR8Agv7gKnei0aAdLzWgIR0CbiFcHWz4UdX2UKGgGR0BXVAbuMMqjaAdN6ANoCEdAm5CXqAz55HV9lChoBkdAcDRklNUOu2gHTV4BaAhHQJuUhPIn0Cl1fZQoaAZHQFvQtWuHN5doB03oA2gIR0CbnOcFhXr/dX2UKGgGR0BjJRokAxSHaAdN6ANoCEdAm6O4XbdrPHV9lChoBkdAZQDpfQa73GgHTegDaAhHQJurPu6VdHF1fZQoaAZHQDwdkJ8fFJhoB0uuaAhHQJutXhBJI2B1fZQoaAZHQGIN7W/ag29oB03oA2gIR0Cbs8qLS/j9dX2UKGgGR0Bkxx1X/5tWaAdN6ANoCEdAm7o7vkRzzXV9lChoBkfAJHRSgoPTX2gHS7toCEdAm7sp7TlT33V9lChoBkdAW+EzJp35e2gHTegDaAhHQJvBkYrJ8v51fZQoaAZHQGLYVpCa7VdoB03oA2gIR0Cbx+SThYNidX2UKGgGR0BiUwtUXHinaAdN6ANoCEdAm84nIMjNZHV9lChoBkdAZdVm29cry2gHTegDaAhHQJvV6pxWDHx1fZQoaAZHQGMdxKQJXyRoB03oA2gIR0Cb3kJF9a2XdX2UKGgGR0BhpF9H+ZPVaAdN6ANoCEdAm+aUQGwA2nV9lChoBkdAXp+jFhoduGgHTegDaAhHQJvvHkn1Fph1fZQoaAZHQGONme+VTrFoB03oA2gIR0Cb9dn8baRIdX2UKGgGR0Bje61TisGQaAdN6ANoCEdAm/xI0qH45HV9lChoBke/9gZR8+iaiWgHS/toCEdAm/2TeTFERnV9lChoBkdAYTVwc5sCT2gHTegDaAhHQJwECyY5T611fZQoaAZHQGIgx5TqB3BoB03oA2gIR0CcCljrAxi5dX2UKGgGR0Bg+tb5dnkDaAdN6ANoCEdAnBCvt6X0G3V9lChoBkdAXGyVZ9uxbGgHTegDaAhHQJwXFlI3BHl1fZQoaAZHQF1nlWfbsWxoB03oA2gIR0CcH0HY6GQCdX2UKGgGR0BfopNXYDkmaAdN2gFoCEdAnCKH+hoM8nV9lChoBkdAW8Gtr9ETg2gHTegDaAhHQJwq5IOH3111fZQoaAZHQFrBy8SPEKpoB03oA2gIR0CcNBdbxEv1dX2UKGgGR0BZcmRFI/Z/aAdN6ANoCEdAnDu5lz2ex3V9lChoBkdAYwaI/qxC6mgHTegDaAhHQJxCHARChOB1fZQoaAZHQGEI0p3HJcRoB03oA2gIR0CcSGhSLqD9dX2UKGgGR0BpvonBtUGWaAdNUgFoCEdAnEorgflp5HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVjQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAAACAvwAAgL+UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAAAAgD8AAIA/lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1. -1.]", "high": "[1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-baseline.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89135e4c5c32fdf735339576950564373ea1bc956baa5dd74dc189fc7a6b842c
|
3 |
+
size 147270
|
ppo-LunarLander-baseline/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-baseline/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a665f765e10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a665f765ea0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a665f765f30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a665f765fc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a665f766050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a665f7660e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a665f766170>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a665f766200>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a665f766290>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a665f766320>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a665f7663b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a665f766440>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a665f768780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1700979877577261328,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE1SWz6AP/E+bhxdvgTSqr7qsYK869d4PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF5w43m3fAOMAWyUTegDjAF0lEdAmkf5gG8mKXV9lChoBkdAYX7bdrO7hGgHTegDaAhHQJpOZ3u/k/91fZQoaAZHQGERcPWhAW1oB03oA2gIR0CaVNs5n13/dX2UKGgGR0BvE/aDf3vhaAdNQwFoCEdAmlaJTVDrq3V9lChoBkdAbS+YMOPNmmgHTQ8BaAhHQJpX+Jk5IYp1fZQoaAZHQGJ3QY1pCa9oB03oA2gIR0CaXniSJTESdX2UKGgGR0BuMUsUZeiSaAdNRwFoCEdAmmAqgVXV9XV9lChoBkdAbP32lEZzgmgHTSkBaAhHQJpi2Y6XBxh1fZQoaAZHQGHjp3gUDdRoB03oA2gIR0CaaVbSqlxfdX2UKGgGR0BfPUtyxRl6aAdN6ANoCEdAmnGL3TNMXnV9lChoBkdAcHgh9b5dnmgHTVQBaAhHQJpz30cwQDp1fZQoaAZHQGSvw6p5u65oB03oA2gIR0CafCAgPmPpdX2UKGgGR0BjaaRQrMC+aAdN6ANoCEdAmoSB0+1SfnV9lChoBkfAQPT4BV+7UWgHS91oCEdAmoX+AI6bOXV9lChoBkdAZNFGrjo6jmgHTegDaAhHQJqNUPvrnkl1fZQoaAZHQGr5bKA8SwpoB01QAWgIR0CakDfQKKHgdX2UKGgGR0BlJ8dLg4wRaAdN6ANoCEdAmpVadH2AXnV9lChoBkdAbhRFy7wrlWgHTVsDaAhHQJqa/cL0Bfd1fZQoaAZHQGaUdFOO801oB03oA2gIR0CaoVLxI8QqdX2UKGgGR0BfRskt29teaAdN6ANoCEdAmqfLRfF72XV9lChoBkdAa7Pyup0fYGgHTTEBaAhHQJqqhGnXNC91fZQoaAZHQGS6WVu76HloB03oA2gIR0CasP2jfvWpdX2UKGgGR0BpvsvRJEpiaAdNSAFoCEdAmrNNTHbRGHV9lChoBkdAbJIcslLOA2gHTToBaAhHQJq1c7eVLSN1fZQoaAZHQGiWUXpGFzxoB01EAWgIR0CauSU70WdmdX2UKGgGR0A7V4X40uUVaAdL82gIR0Cauv7QLNOedX2UKGgGR0Bj44NZvDP4aAdN6ANoCEdAmsMwg9vCM3V9lChoBkdAZmtXwLE1mGgHTegDaAhHQJrLikvboKV1fZQoaAZHQGvf2M85jpdoB00lAWgIR0CazYNbkfcOdX2UKGgGR0Bjf/pnpSrHaAdN6ANoCEdAmtS9szl90HV9lChoBkdAMOSHdoFmnWgHS+VoCEdAmtX2q5sj3XV9lChoBkdAa16Jswco6WgHTZUBaAhHQJrZLxQSBbx1fZQoaAZHQFznkKeCkGloB03oA2gIR0Ca342mpEQYdX2UKGgGR0BlYWANG3F2aAdN6ANoCEdAmuX/NZ/0/XV9lChoBkdAYbv2OAAhjmgHTegDaAhHQJrsnIikftB1fZQoaAZHQGjblFUhmoRoB01PAWgIR0Ca7mvxYq5LdX2UKGgGR0AjSzByjpLVaAdL32gIR0Ca75U0vXbudX2UKGgGR0Bj3oqPOpsHaAdN6ANoCEdAmvZ4FV1fV3V9lChoBkdAYZi2eg+Ql2gHTegDaAhHQJr+G7K7qY91fZQoaAZHP/1JDVpbliloB0v0aAhHQJr/zG+9Jz11fZQoaAZHQGJxOhkAggZoB03oA2gIR0CbCCARChN/dX2UKGgGR0BcKu9alk6LaAdN6ANoCEdAmxCHIZIg/3V9lChoBkdAEHVMmF8G92gHS9NoCEdAmxHod+5OJ3V9lChoBkdAYuVqhUR3/2gHTegDaAhHQJsZ9TBInSh1fZQoaAZHQFyLcdo371toB03oA2gIR0CbIEH09QoDdX2UKGgGR0BB21MEidJ8aAdL2GgIR0CbIogogFHKdX2UKGgGR0Bj3hYJVsDXaAdN6ANoCEdAmyj/UF0PpnV9lChoBkdAY7s0zCUHIWgHTegDaAhHQJsvTjebd8B1fZQoaAZHQGmljLjghr5oB008AWgIR0CbMP69kBjndX2UKGgGR0BdX8YuTRplaAdN6ANoCEdAmzde+IuXeHV9lChoBkdAYx1foA4n4WgHTegDaAhHQJs9wrK/2011fZQoaAZHQGJAEm6XjVBoB03oA2gIR0CbRXHrQgLadX2UKGgGR0Bq07cbiqACaAdNWQFoCEdAm0fD19ORDHV9lChoBkdAYikYXO4XoGgHTegDaAhHQJtP+kIomXx1fZQoaAZHQGFytt65XltoB03oA2gIR0CbWEgVGkN4dX2UKGgGR0BsO4pDu0CzaAdNEQFoCEdAm1olTR6WxHV9lChoBkdAX8KbAk9lmWgHTegDaAhHQJth/m5lOGl1fZQoaAZHQG0pxRVIZqFoB02MAWgIR0CbZSUJOWSmdX2UKGgGR0Bfdomois4laAdN6ANoCEdAm2uHfl6qsHV9lChoBkdAZI4+GoJiRWgHTegDaAhHQJtxzqiXY151fZQoaAZHQD8tr433pOhoB0vgaAhHQJty9UR3/xV1fZQoaAZHwC4y3VkMCtBoB0vhaAhHQJt0H3ta6jF1fZQoaAZHQGZfbnxJ/XpoB03oA2gIR0CbemJBw++udX2UKGgGR0BhIl8ma6SUaAdN6ANoCEdAm4DOkYXO4XV9lChoBkdAMcC2Dxsl9mgHS9ZoCEdAm4HgQ6IWQHV9lChoBkdAbAZCY1He8GgHTQgBaAhHQJuDQIsyzol1fZQoaAZHQGmKWQnx8UpoB00oAWgIR0Cbhekt29tedX2UKGgGR0BD7lv60pmVaAdL82gIR0CbhywTM7lrdX2UKGgGR8Agv7gKnei0aAdLzWgIR0CbiFcHWz4UdX2UKGgGR0BXVAbuMMqjaAdN6ANoCEdAm5CXqAz55HV9lChoBkdAcDRklNUOu2gHTV4BaAhHQJuUhPIn0Cl1fZQoaAZHQFvQtWuHN5doB03oA2gIR0CbnOcFhXr/dX2UKGgGR0BjJRokAxSHaAdN6ANoCEdAm6O4XbdrPHV9lChoBkdAZQDpfQa73GgHTegDaAhHQJurPu6VdHF1fZQoaAZHQDwdkJ8fFJhoB0uuaAhHQJutXhBJI2B1fZQoaAZHQGIN7W/ag29oB03oA2gIR0Cbs8qLS/j9dX2UKGgGR0Bkxx1X/5tWaAdN6ANoCEdAm7o7vkRzzXV9lChoBkfAJHRSgoPTX2gHS7toCEdAm7sp7TlT33V9lChoBkdAW+EzJp35e2gHTegDaAhHQJvBkYrJ8v51fZQoaAZHQGLYVpCa7VdoB03oA2gIR0Cbx+SThYNidX2UKGgGR0BiUwtUXHinaAdN6ANoCEdAm84nIMjNZHV9lChoBkdAZdVm29cry2gHTegDaAhHQJvV6pxWDHx1fZQoaAZHQGMdxKQJXyRoB03oA2gIR0Cb3kJF9a2XdX2UKGgGR0BhpF9H+ZPVaAdN6ANoCEdAm+aUQGwA2nV9lChoBkdAXp+jFhoduGgHTegDaAhHQJvvHkn1Fph1fZQoaAZHQGONme+VTrFoB03oA2gIR0Cb9dn8baRIdX2UKGgGR0Bje61TisGQaAdN6ANoCEdAm/xI0qH45HV9lChoBke/9gZR8+iaiWgHS/toCEdAm/2TeTFERnV9lChoBkdAYTVwc5sCT2gHTegDaAhHQJwECyY5T611fZQoaAZHQGIgx5TqB3BoB03oA2gIR0CcCljrAxi5dX2UKGgGR0Bg+tb5dnkDaAdN6ANoCEdAnBCvt6X0G3V9lChoBkdAXGyVZ9uxbGgHTegDaAhHQJwXFlI3BHl1fZQoaAZHQF1nlWfbsWxoB03oA2gIR0CcH0HY6GQCdX2UKGgGR0BfopNXYDkmaAdN2gFoCEdAnCKH+hoM8nV9lChoBkdAW8Gtr9ETg2gHTegDaAhHQJwq5IOH3111fZQoaAZHQFrBy8SPEKpoB03oA2gIR0CcNBdbxEv1dX2UKGgGR0BZcmRFI/Z/aAdN6ANoCEdAnDu5lz2ex3V9lChoBkdAYwaI/qxC6mgHTegDaAhHQJxCHARChOB1fZQoaAZHQGEI0p3HJcRoB03oA2gIR0CcSGhSLqD9dX2UKGgGR0BpvonBtUGWaAdNUgFoCEdAnEorgflp5HVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVjQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAAACAvwAAgL+UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAAAAgD8AAIA/lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True]",
|
75 |
+
"bounded_above": "[ True True]",
|
76 |
+
"_shape": [
|
77 |
+
2
|
78 |
+
],
|
79 |
+
"low": "[-1. -1.]",
|
80 |
+
"high": "[1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 1,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-LunarLander-baseline/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7307c2d5a17a48ff38d75a5d75eb734dc2143f9c25b53af5479240cda83bf7c5
|
3 |
+
size 88033
|
ppo-LunarLander-baseline/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b96e61eaf23612d631e6ec973ebd111bab7d4e8d72e6e1db3d9c66a3d0d17176
|
3 |
+
size 43567
|
ppo-LunarLander-baseline/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-baseline/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (157 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 140.68325356628753, "std_reward": 95.27487318564567, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-26T07:14:24.762496"}
|