|
|
|
from datasets import load_dataset, load_metric, Audio |
|
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor |
|
import torch |
|
import re |
|
|
|
lang = "sv-SE" |
|
model_id = "./xls-r-300m-sv" |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
dataset = load_dataset("mozilla-foundation/common_voice_7_0", lang, split="test", use_auth_token=True) |
|
wer = load_metric("wer") |
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) |
|
|
|
model = AutoModelForCTC.from_pretrained(model_id).to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
|
|
chars_to_ignore_regex = '[,?.!\-\;\:\"β%ββοΏ½βββ¦β]' |
|
|
|
|
|
def map_to_pred(batch): |
|
input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest", sampling_rate=16_000).input_values |
|
|
|
with torch.no_grad(): |
|
logits = model(input_values.to(device)).logits |
|
|
|
if processor.__class__.__name__ == "Wav2Vec2Processor": |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
else: |
|
transcription = processor.batch_decode(logits.cpu().numpy()).text[0] |
|
|
|
batch["transcription"] = transcription |
|
batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower()) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=["audio"]) |
|
|
|
wer_result = wer.compute(references=result["text"], predictions=result["transcription"]) |
|
|
|
print("WER", wer_result) |
|
|