fix repo
Browse files- README.md +7 -18
- pic/precipitation_small.gif +3 -0
- pic/wind_small.gif +3 -0
- weights/fourcastnet/backbone.pt +3 -0
- weights/fourcastnet/precipitation.pt +3 -0
- weights/fourcastnet_plus/README.md +54 -0
- weights/graphcast/README.md +54 -0
README.md
CHANGED
@@ -13,13 +13,13 @@ tags:
|
|
13 |
|
14 |
This is an open-source solutions of global data-driven high-resolution weather forecasting, implemented and improved by [High-Flyer AI](https://www.high-flyer.cn/). It can compare with the ECMWF Integrated Forecasting System (IFS).
|
15 |
|
16 |
-
See also: [Github repository](https://github.com/HFAiLab/
|
17 |
|
18 |
Several cases:
|
19 |
|
20 |
-
![Typhoon track comparison](./wind_small.gif)
|
21 |
|
22 |
-
![Water vapour comparison](./precipitation_small.gif)
|
23 |
|
24 |
For more cases about FourCastNet/GraphCast prediction, please have a look at [HF-Earth](https://www.high-flyer.cn/hf-earth/), a daily updated demo released by [High-Flyer AI](https://www.high-flyer.cn/en/).
|
25 |
|
@@ -32,12 +32,12 @@ You can load the weights `backbone.pt` and `precipitation.pt` to generate weathe
|
|
32 |
```python
|
33 |
import xarray as xr
|
34 |
import cartopy.crs as ccrs
|
35 |
-
from afnonet import AFNONet # download the code from https://github.com/HFAiLab/
|
36 |
|
37 |
backbone_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=20, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
38 |
-
backbone_model.load('./backbone.pt')
|
39 |
precip_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=1, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
40 |
-
precip_model.load('./precipitation.pt')
|
41 |
|
42 |
input_x = get_data('2023-01-01 00:00:00')
|
43 |
|
@@ -51,15 +51,4 @@ ax.coastlines(resolution='110m')
|
|
51 |
plt.savefig('img.png')
|
52 |
```
|
53 |
|
54 |
-
FourCastNet can predict 7 surface variables, plus 5 atmospheric variables at each of 3 or 4 pressure levels, for 21 variables total. The details of these variables follow the [paper](https://arxiv.org/abs/2202.11214).
|
55 |
-
|
56 |
-
## Description of Files
|
57 |
-
|
58 |
-
`backbone.pt`
|
59 |
-
+ the weights of backbone model, 191MB, which is trained on 20 atmospheric variables from `1979-01` to `2022-12`.
|
60 |
-
|
61 |
-
`precipitation.pt`
|
62 |
-
+ the weights of precipitation model, 187MB, which is trained on the variable `total_precipitation` from `1979-01` to `2022-12`.
|
63 |
-
|
64 |
-
`infer2img.py`
|
65 |
-
+ Case code: load the above two weights to generate images of global weather prediction.
|
|
|
13 |
|
14 |
This is an open-source solutions of global data-driven high-resolution weather forecasting, implemented and improved by [High-Flyer AI](https://www.high-flyer.cn/). It can compare with the ECMWF Integrated Forecasting System (IFS).
|
15 |
|
16 |
+
See also: [Github repository](https://github.com/HFAiLab/OpenCastKit) and [High-flyer AI's blog](https://www.high-flyer.cn/blog/opencast/)
|
17 |
|
18 |
Several cases:
|
19 |
|
20 |
+
![Typhoon track comparison](./pic/wind_small.gif)
|
21 |
|
22 |
+
![Water vapour comparison](./pic/precipitation_small.gif)
|
23 |
|
24 |
For more cases about FourCastNet/GraphCast prediction, please have a look at [HF-Earth](https://www.high-flyer.cn/hf-earth/), a daily updated demo released by [High-Flyer AI](https://www.high-flyer.cn/en/).
|
25 |
|
|
|
32 |
```python
|
33 |
import xarray as xr
|
34 |
import cartopy.crs as ccrs
|
35 |
+
from afnonet import AFNONet # download the code from https://github.com/HFAiLab/OpenCastKit/blob/master/model/afnonet.py
|
36 |
|
37 |
backbone_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=20, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
38 |
+
backbone_model.load('./weights/fourcastnet/backbone.pt')
|
39 |
precip_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=1, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
40 |
+
precip_model.load('./weights/fourcastnet/precipitation.pt')
|
41 |
|
42 |
input_x = get_data('2023-01-01 00:00:00')
|
43 |
|
|
|
51 |
plt.savefig('img.png')
|
52 |
```
|
53 |
|
54 |
+
FourCastNet can predict 7 surface variables, plus 5 atmospheric variables at each of 3 or 4 pressure levels, for 21 variables total. The details of these variables follow the [paper](https://arxiv.org/abs/2202.11214).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pic/precipitation_small.gif
ADDED
Git LFS Details
|
pic/wind_small.gif
ADDED
Git LFS Details
|
weights/fourcastnet/backbone.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e09df40f9970ca11329e34eef1b423aab9e79cefad89e7e0ab26c3253e89b1d
|
3 |
+
size 200121595
|
weights/fourcastnet/precipitation.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ced06ed74c1dc4f061e4bf402c31c45e8d2f8b39e8ec71915ff7e1b1164d03b
|
3 |
+
size 195950331
|
weights/fourcastnet_plus/README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
tags:
|
9 |
+
- climate
|
10 |
+
---
|
11 |
+
|
12 |
+
# OpenCastKit: an open-source solutions of global data-driven high-resolution weather forecasting
|
13 |
+
|
14 |
+
This is an open-source solutions of global data-driven high-resolution weather forecasting, implemented and improved by [High-Flyer AI](https://www.high-flyer.cn/). It can compare with the ECMWF Integrated Forecasting System (IFS).
|
15 |
+
|
16 |
+
See also: [Github repository](https://github.com/HFAiLab/OpenCastKit) and [High-flyer AI's blog](https://www.high-flyer.cn/blog/opencast/)
|
17 |
+
|
18 |
+
Several cases:
|
19 |
+
|
20 |
+
![Typhoon track comparison](./pic/wind_small.gif)
|
21 |
+
|
22 |
+
![Water vapour comparison](./pic/precipitation_small.gif)
|
23 |
+
|
24 |
+
For more cases about FourCastNet/GraphCast prediction, please have a look at [HF-Earth](https://www.high-flyer.cn/hf-earth/), a daily updated demo released by [High-Flyer AI](https://www.high-flyer.cn/en/).
|
25 |
+
|
26 |
+
## Inference
|
27 |
+
|
28 |
+
### FourCastNet
|
29 |
+
|
30 |
+
You can load the weights `backbone.pt` and `precipitation.pt` to generate weather predictions, as shown in the following pseudocode. The complete code is released at `./infer2img.py`.
|
31 |
+
|
32 |
+
```python
|
33 |
+
import xarray as xr
|
34 |
+
import cartopy.crs as ccrs
|
35 |
+
from afnonet import AFNONet # download the code from https://github.com/HFAiLab/OpenCastKit/blob/master/model/afnonet.py
|
36 |
+
|
37 |
+
backbone_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=20, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
38 |
+
backbone_model.load('./weights/fourcastnet/backbone.pt')
|
39 |
+
precip_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=1, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
40 |
+
precip_model.load('./weights/fourcastnet/precipitation.pt')
|
41 |
+
|
42 |
+
input_x = get_data('2023-01-01 00:00:00')
|
43 |
+
|
44 |
+
pred_x = backbone_model(input_x) # input Xt, output Xt+1
|
45 |
+
pred_p = precip_model(pred_x) # input Xt+1, output Pt+1
|
46 |
+
|
47 |
+
plot_data = xr.Dataset([pred_x, pred_p])
|
48 |
+
ax = plt.axes(projection=ccrs.PlateCarree())
|
49 |
+
plot_data.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False, add_labels=False, rasterized=True)
|
50 |
+
ax.coastlines(resolution='110m')
|
51 |
+
plt.savefig('img.png')
|
52 |
+
```
|
53 |
+
|
54 |
+
FourCastNet can predict 7 surface variables, plus 5 atmospheric variables at each of 3 or 4 pressure levels, for 21 variables total. The details of these variables follow the [paper](https://arxiv.org/abs/2202.11214).
|
weights/graphcast/README.md
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
tags:
|
9 |
+
- climate
|
10 |
+
---
|
11 |
+
|
12 |
+
# OpenCastKit: an open-source solutions of global data-driven high-resolution weather forecasting
|
13 |
+
|
14 |
+
This is an open-source solutions of global data-driven high-resolution weather forecasting, implemented and improved by [High-Flyer AI](https://www.high-flyer.cn/). It can compare with the ECMWF Integrated Forecasting System (IFS).
|
15 |
+
|
16 |
+
See also: [Github repository](https://github.com/HFAiLab/OpenCastKit) and [High-flyer AI's blog](https://www.high-flyer.cn/blog/opencast/)
|
17 |
+
|
18 |
+
Several cases:
|
19 |
+
|
20 |
+
![Typhoon track comparison](./pic/wind_small.gif)
|
21 |
+
|
22 |
+
![Water vapour comparison](./pic/precipitation_small.gif)
|
23 |
+
|
24 |
+
For more cases about FourCastNet/GraphCast prediction, please have a look at [HF-Earth](https://www.high-flyer.cn/hf-earth/), a daily updated demo released by [High-Flyer AI](https://www.high-flyer.cn/en/).
|
25 |
+
|
26 |
+
## Inference
|
27 |
+
|
28 |
+
### FourCastNet
|
29 |
+
|
30 |
+
You can load the weights `backbone.pt` and `precipitation.pt` to generate weather predictions, as shown in the following pseudocode. The complete code is released at `./infer2img.py`.
|
31 |
+
|
32 |
+
```python
|
33 |
+
import xarray as xr
|
34 |
+
import cartopy.crs as ccrs
|
35 |
+
from afnonet import AFNONet # download the code from https://github.com/HFAiLab/OpenCastKit/blob/master/model/afnonet.py
|
36 |
+
|
37 |
+
backbone_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=20, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
38 |
+
backbone_model.load('./weights/fourcastnet/backbone.pt')
|
39 |
+
precip_model = AFNONet(img_size=[720, 1440], in_chans=20, out_chans=1, norm_layer=partial(nn.LayerNorm, eps=1e-6))
|
40 |
+
precip_model.load('./weights/fourcastnet/precipitation.pt')
|
41 |
+
|
42 |
+
input_x = get_data('2023-01-01 00:00:00')
|
43 |
+
|
44 |
+
pred_x = backbone_model(input_x) # input Xt, output Xt+1
|
45 |
+
pred_p = precip_model(pred_x) # input Xt+1, output Pt+1
|
46 |
+
|
47 |
+
plot_data = xr.Dataset([pred_x, pred_p])
|
48 |
+
ax = plt.axes(projection=ccrs.PlateCarree())
|
49 |
+
plot_data.plot(ax=ax, transform=ccrs.PlateCarree(), add_colorbar=False, add_labels=False, rasterized=True)
|
50 |
+
ax.coastlines(resolution='110m')
|
51 |
+
plt.savefig('img.png')
|
52 |
+
```
|
53 |
+
|
54 |
+
FourCastNet can predict 7 surface variables, plus 5 atmospheric variables at each of 3 or 4 pressure levels, for 21 variables total. The details of these variables follow the [paper](https://arxiv.org/abs/2202.11214).
|