herutriana44's picture
First Commit
b7d9967 verified
raw
history blame contribute delete
No virus
12.3 kB
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020, 2023.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""PrimitiveOp Class"""
from typing import Dict, List, Optional, Set, Union, cast
import numpy as np
import scipy.linalg
from scipy.sparse import spmatrix
from qiskit import QuantumCircuit
from qiskit.circuit import Instruction, ParameterExpression
from qiskit.opflow.operator_base import OperatorBase
from qiskit.quantum_info import Operator, Pauli, SparsePauliOp, Statevector
from qiskit.utils.deprecation import deprecate_func
class PrimitiveOp(OperatorBase):
r"""
Deprecated: A class for representing basic Operators, backed by Operator primitives from
Terra. This class (and inheritors) primarily serves to allow the underlying
primitives to "flow" - i.e. interoperability and adherence to the Operator formalism
- while the core computational logic mostly remains in the underlying primitives.
For example, we would not produce an interface in Terra in which
``QuantumCircuit1 + QuantumCircuit2`` equaled the Operator sum of the circuit
unitaries, rather than simply appending the circuits. However, within the Operator
flow summing the unitaries is the expected behavior.
Note that all mathematical methods are not in-place, meaning that they return a
new object, but the underlying primitives are not copied.
"""
def __init_subclass__(cls):
cls.__new__ = lambda cls, *args, **kwargs: super().__new__(cls)
@staticmethod
# pylint: disable=unused-argument
def __new__(
cls,
primitive: Union[
Instruction, QuantumCircuit, List, np.ndarray, spmatrix, Operator, Pauli, SparsePauliOp
],
coeff: Union[complex, ParameterExpression] = 1.0,
) -> "PrimitiveOp":
"""A factory method to produce the correct type of PrimitiveOp subclass
based on the primitive passed in. Primitive and coeff arguments are passed into
subclass's init() as-is automatically by new().
Args:
primitive: The operator primitive being wrapped.
coeff: A coefficient multiplying the primitive.
Returns:
The appropriate PrimitiveOp subclass for ``primitive``.
Raises:
TypeError: Unsupported primitive type passed.
"""
# pylint: disable=cyclic-import
if isinstance(primitive, (Instruction, QuantumCircuit)):
from .circuit_op import CircuitOp
return super().__new__(CircuitOp)
if isinstance(primitive, (list, np.ndarray, spmatrix, Operator)):
from .matrix_op import MatrixOp
return super().__new__(MatrixOp)
if isinstance(primitive, Pauli):
from .pauli_op import PauliOp
return super().__new__(PauliOp)
if isinstance(primitive, SparsePauliOp):
from .pauli_sum_op import PauliSumOp
return super().__new__(PauliSumOp)
raise TypeError(
"Unsupported primitive type {} passed into PrimitiveOp "
"factory constructor".format(type(primitive))
)
@deprecate_func(
since="0.24.0",
additional_msg="For code migration guidelines, visit https://qisk.it/opflow_migration.",
)
def __init__(
self,
primitive: Union[QuantumCircuit, Operator, Pauli, SparsePauliOp, OperatorBase],
coeff: Union[complex, ParameterExpression] = 1.0,
) -> None:
"""
Args:
primitive: The operator primitive being wrapped.
coeff: A coefficient multiplying the primitive.
"""
super().__init__()
self._primitive = primitive
self._coeff = coeff
@property
def primitive(self) -> Union[QuantumCircuit, Operator, Pauli, SparsePauliOp, OperatorBase]:
"""The primitive defining the underlying function of the Operator.
Returns:
The primitive object.
"""
return self._primitive
@property
def coeff(self) -> Union[complex, ParameterExpression]:
"""
The scalar coefficient multiplying the Operator.
Returns:
The coefficient.
"""
return self._coeff
@property
def num_qubits(self) -> int:
raise NotImplementedError
@property
def settings(self) -> Dict:
"""Return operator settings."""
return {"primitive": self._primitive, "coeff": self._coeff}
def primitive_strings(self) -> Set[str]:
raise NotImplementedError
def add(self, other: OperatorBase) -> OperatorBase:
raise NotImplementedError
def adjoint(self) -> OperatorBase:
raise NotImplementedError
def equals(self, other: OperatorBase) -> bool:
raise NotImplementedError
def mul(self, scalar: Union[complex, ParameterExpression]) -> OperatorBase:
if not isinstance(scalar, (int, float, complex, ParameterExpression)):
raise ValueError(
"Operators can only be scalar multiplied by float or complex, not "
"{} of type {}.".format(scalar, type(scalar))
)
# Need to return self.__class__ in case the object is one of the inherited OpPrimitives
return self.__class__(self.primitive, coeff=self.coeff * scalar)
def tensor(self, other: OperatorBase) -> OperatorBase:
raise NotImplementedError
def tensorpower(self, other: int) -> Union[OperatorBase, int]:
# Hack to make Z^(I^0) work as intended.
if other == 0:
return 1
if not isinstance(other, int) or other < 0:
raise TypeError("Tensorpower can only take positive int arguments")
temp = PrimitiveOp(self.primitive, coeff=self.coeff) # type: OperatorBase
for _ in range(other - 1):
temp = temp.tensor(self)
return temp
def compose(
self, other: OperatorBase, permutation: Optional[List[int]] = None, front: bool = False
) -> OperatorBase:
# pylint: disable=cyclic-import
from ..list_ops.composed_op import ComposedOp
new_self, other = self._expand_shorter_operator_and_permute(other, permutation)
if isinstance(other, ComposedOp):
comp_with_first = new_self.compose(other.oplist[0])
if not isinstance(comp_with_first, ComposedOp):
new_oplist = [comp_with_first] + other.oplist[1:]
return ComposedOp(new_oplist, coeff=other.coeff)
return ComposedOp([new_self] + other.oplist, coeff=other.coeff)
return ComposedOp([new_self, other])
def _expand_dim(self, num_qubits: int) -> OperatorBase:
raise NotImplementedError
def permute(self, permutation: List[int]) -> OperatorBase:
raise NotImplementedError
def exp_i(self) -> OperatorBase:
"""Return Operator exponentiation, equaling e^(-i * op)"""
# pylint: disable=cyclic-import
from ..evolutions.evolved_op import EvolvedOp
return EvolvedOp(self)
def log_i(self, massive: bool = False) -> OperatorBase:
"""Return a ``MatrixOp`` equivalent to log(H)/-i for this operator H. This
function is the effective inverse of exp_i, equivalent to finding the Hermitian
Operator which produces self when exponentiated."""
# pylint: disable=cyclic-import
from ..operator_globals import EVAL_SIG_DIGITS
from .matrix_op import MatrixOp
return MatrixOp(
np.around(
scipy.linalg.logm(self.to_matrix(massive=massive)) / -1j, decimals=EVAL_SIG_DIGITS
)
)
def __str__(self) -> str:
raise NotImplementedError
def __repr__(self) -> str:
return f"{type(self).__name__}({repr(self.primitive)}, coeff={self.coeff})"
def eval(
self,
front: Optional[
Union[str, Dict[str, complex], np.ndarray, OperatorBase, Statevector]
] = None,
) -> Union[OperatorBase, complex]:
raise NotImplementedError
@property
def parameters(self):
params = set()
if isinstance(self.primitive, (OperatorBase, QuantumCircuit)):
params.update(self.primitive.parameters)
if isinstance(self.coeff, ParameterExpression):
params.update(self.coeff.parameters)
return params
def assign_parameters(self, param_dict: dict) -> OperatorBase:
param_value = self.coeff
if isinstance(self.coeff, ParameterExpression):
unrolled_dict = self._unroll_param_dict(param_dict)
if isinstance(unrolled_dict, list):
# pylint: disable=cyclic-import
from ..list_ops.list_op import ListOp
return ListOp([self.assign_parameters(param_dict) for param_dict in unrolled_dict])
if self.coeff.parameters <= set(unrolled_dict.keys()):
binds = {param: unrolled_dict[param] for param in self.coeff.parameters}
param_value = complex(self.coeff.bind(binds))
if abs(param_value.imag) == 0:
param_value = param_value.real
return self.__class__(self.primitive, coeff=param_value)
# Nothing to collapse here.
def reduce(self) -> OperatorBase:
return self
def to_matrix(self, massive: bool = False) -> np.ndarray:
raise NotImplementedError
def to_matrix_op(self, massive: bool = False) -> OperatorBase:
"""Returns a ``MatrixOp`` equivalent to this Operator."""
coeff = self.coeff
op = self.copy()
op._coeff = 1
prim_mat = op.to_matrix(massive=massive)
from .matrix_op import MatrixOp
return MatrixOp(prim_mat, coeff=coeff)
def to_instruction(self) -> Instruction:
"""Returns an ``Instruction`` equivalent to this Operator."""
raise NotImplementedError
def to_circuit(self) -> QuantumCircuit:
"""Returns a ``QuantumCircuit`` equivalent to this Operator."""
qc = QuantumCircuit(self.num_qubits)
qc.append(self.to_instruction(), qargs=range(self.primitive.num_qubits))
return qc.decompose()
def to_circuit_op(self) -> OperatorBase:
"""Returns a ``CircuitOp`` equivalent to this Operator."""
from .circuit_op import CircuitOp
if self.coeff == 0:
return CircuitOp(QuantumCircuit(self.num_qubits), coeff=0)
return CircuitOp(self.to_circuit(), coeff=self.coeff)
def to_pauli_op(self, massive: bool = False) -> OperatorBase:
"""Returns a sum of ``PauliOp`` s equivalent to this Operator."""
# pylint: disable=cyclic-import
from .matrix_op import MatrixOp
mat_op = cast(MatrixOp, self.to_matrix_op(massive=massive))
sparse_pauli = SparsePauliOp.from_operator(mat_op.primitive)
if not sparse_pauli.to_list():
from ..operator_globals import I
return (I ^ self.num_qubits) * 0.0
from .pauli_op import PauliOp
if len(sparse_pauli) == 1:
label, coeff = sparse_pauli.to_list()[0]
coeff = coeff.real if np.isreal(coeff) else coeff
return PauliOp(Pauli(label), coeff * self.coeff)
from ..list_ops.summed_op import SummedOp
return SummedOp(
[
PrimitiveOp(
Pauli(label),
coeff.real if coeff == coeff.real else coeff,
)
for (label, coeff) in sparse_pauli.to_list()
],
self.coeff,
)