|
import torch |
|
import torch.distributed as dist |
|
from torch._six import inf |
|
import io |
|
from timm.utils import get_state_dict |
|
try: |
|
from apex import amp |
|
APEX_INSTALLED = True |
|
except: |
|
print('apex has not been installed.') |
|
APEX_INSTALLED = False |
|
|
|
|
|
class NativeScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self, enabled=True, growth_interval=500, init_scale=2.**13): |
|
self.enabled = enabled |
|
self._scaler = torch.cuda.amp.GradScaler(init_scale=init_scale, growth_interval=growth_interval, enabled=self.enabled) |
|
|
|
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True, |
|
fp16=False, iter=0, min_loss_scale= 2048.0, loss_scale_window=200): |
|
self._scaler.scale(loss).backward(create_graph=create_graph) |
|
|
|
if fp16: |
|
|
|
if iter > 5000 and self._scaler.get_scale() < min_loss_scale: |
|
min_growth_interval = 5 |
|
if self._scaler.get_growth_interval() != min_growth_interval: |
|
self._scaler.set_growth_interval(min_growth_interval) |
|
|
|
elif iter > 5000 and self._scaler.get_growth_interval() == 5: |
|
self._scaler.set_growth_interval(loss_scale_window) |
|
|
|
if update_grad: |
|
if clip_grad is not None and clip_grad > 0.0: |
|
assert parameters is not None |
|
self._scaler.unscale_(optimizer) |
|
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) |
|
else: |
|
self._scaler.unscale_(optimizer) |
|
norm = get_grad_norm_(parameters) |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def step(self, optimizer): |
|
self._scaler.step(optimizer) |
|
|
|
def update(self): |
|
self._scaler.update() |
|
|
|
def get_scale(self): |
|
return self._scaler.get_scale() |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
class ApexScalerWithGradNormCount: |
|
state_dict_key = "amp_scaler" |
|
|
|
def __init__(self, enabled=True): |
|
self.enabled = enabled |
|
self._scaler = amp |
|
|
|
def __call__(self, |
|
loss, |
|
optimizer, |
|
clip_grad=None, |
|
parameters=None, |
|
create_graph=False, |
|
update_grad=True, |
|
fp16=False, |
|
iter=0, |
|
min_loss_scale=2048.0, |
|
loss_scale_window=200): |
|
|
|
with self._scaler.scale_loss(loss, optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
|
|
if update_grad: |
|
if clip_grad is not None and clip_grad > 0.0: |
|
norm = torch.nn.utils.clip_grad_norm_( |
|
amp.master_params(optimizer), clip_grad) |
|
else: |
|
|
|
norm = get_grad_norm_(amp.master_params(optimizer)) |
|
else: |
|
norm = None |
|
return norm |
|
|
|
def step(self, optimizer): |
|
optimizer.step() |
|
|
|
|
|
def update(self): |
|
pass |
|
|
|
def get_scale(self): |
|
return self._scaler.state_dict()['loss_scaler0']['loss_scale'] |
|
|
|
def state_dict(self): |
|
return self._scaler.state_dict() |
|
|
|
def load_state_dict(self, state_dict): |
|
self._scaler.load_state_dict(state_dict) |
|
|
|
|
|
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: |
|
if isinstance(parameters, torch.Tensor): |
|
parameters = [parameters] |
|
parameters = [p for p in parameters if p.grad is not None] |
|
norm_type = float(norm_type) |
|
if len(parameters) == 0: |
|
return torch.tensor(0.) |
|
device = parameters[0].grad.device |
|
if norm_type == inf: |
|
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
|
else: |
|
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
|
return total_norm |