|
|
|
|
|
import torch |
|
|
|
from apex.multi_tensor_apply import multi_tensor_applier |
|
class LAMB(torch.optim.Optimizer): |
|
"""Implements LAMB algorithm. |
|
|
|
Currently GPU-only. Requires Apex to be installed via |
|
``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. |
|
|
|
This version of fused LAMB implements 2 fusions. |
|
|
|
* Fusion of the LAMB update's elementwise operations |
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. |
|
|
|
:class:`apex.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer:: |
|
|
|
opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) |
|
... |
|
opt.step() |
|
|
|
:class:`apex.optimizers.FusedLAMB` may be used with or without Amp. If you wish to use :class:`FusedLAMB` with Amp, |
|
you may choose any ``opt_level``:: |
|
|
|
opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....) |
|
model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") |
|
... |
|
opt.step() |
|
|
|
In general, ``opt_level="O1"`` is recommended. |
|
|
|
LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its norm. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
NOT SUPPORTED now! (default: False) |
|
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay |
|
True for decoupled weight decay(also known as AdamW) (default: True) |
|
grad_averaging (bool, optional): whether apply (1-beta2) to grad when |
|
calculating running averages of gradient. (default: True) |
|
set_grad_none (bool, optional): whether set grad to None when zero_grad() |
|
method is called. (default: True) |
|
max_grad_norm (float, optional): value used to clip global grad norm |
|
(default: 1.0) |
|
use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0 |
|
weight decay parameter (default: False) |
|
|
|
.. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes: |
|
https://arxiv.org/abs/1904.00962 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
def __init__(self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-6, |
|
weight_decay=0.01, |
|
amsgrad=False, |
|
adam_w_mode=True, |
|
grad_averaging=True, |
|
set_grad_none=True, |
|
max_grad_norm=1.0, |
|
use_nvlamb=False): |
|
if amsgrad: |
|
raise RuntimeError('FusedLAMB does not support the AMSGrad variant.') |
|
defaults = dict(lr=lr, |
|
bias_correction=bias_correction, |
|
betas=betas, |
|
eps=eps, |
|
weight_decay=weight_decay, |
|
grad_averaging=grad_averaging, |
|
max_grad_norm=max_grad_norm) |
|
super(LAMB, self).__init__(params, defaults) |
|
if multi_tensor_applier.available: |
|
import amp_C |
|
self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm |
|
|
|
self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device) |
|
self.multi_tensor_lamb = amp_C.multi_tensor_lamb |
|
else: |
|
raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions') |
|
|
|
self.adam_w_mode = 1 if adam_w_mode else 0 |
|
self.set_grad_none = set_grad_none |
|
self.use_nvlamb = use_nvlamb |
|
|
|
def zero_grad(self): |
|
if self.set_grad_none: |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
p.grad = None |
|
else: |
|
super(LAMB, self).zero_grad() |
|
|
|
def step(self, closure=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
|
|
g_all_32, g_all_16 = [], [] |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if p.dtype == torch.float32: |
|
g_all_32.append(p.grad.data) |
|
elif p.dtype == torch.float16: |
|
g_all_16.append(p.grad.data) |
|
else: |
|
raise RuntimeError('FusedLAMB only support fp16 and fp32.') |
|
|
|
device = self.param_groups[0]["params"][0].device |
|
g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device) |
|
|
|
if len(g_all_32) > 0: |
|
g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0] |
|
if len(g_all_16) > 0: |
|
g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0] |
|
|
|
|
|
global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False)[0] |
|
max_grad_norm = self.defaults['max_grad_norm'] |
|
|
|
for group in self.param_groups: |
|
bias_correction = 1 if group['bias_correction'] else 0 |
|
beta1, beta2 = group['betas'] |
|
grad_averaging = 1 if group['grad_averaging'] else 0 |
|
|
|
|
|
|
|
if 'step' in group: |
|
group['step'] += 1 |
|
else: |
|
group['step'] = 1 |
|
|
|
|
|
g_16, p_16, m_16, v_16 = [], [], [], [] |
|
g_32, p_32, m_32, v_32 = [], [], [], [] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError('FusedLAMB does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data) |
|
|
|
if p.dtype == torch.float16: |
|
g_16.append(p.grad.data) |
|
p_16.append(p.data) |
|
m_16.append(state['exp_avg']) |
|
v_16.append(state['exp_avg_sq']) |
|
elif p.dtype == torch.float32: |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state['exp_avg']) |
|
v_32.append(state['exp_avg_sq']) |
|
else: |
|
raise RuntimeError('FusedLAMB only support fp16 and fp32.') |
|
|
|
if (len(g_16) > 0): |
|
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2, |
|
group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, |
|
global_grad_norm, max_grad_norm, self.use_nvlamb) |
|
if (len(g_32) > 0): |
|
multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2, |
|
group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode, |
|
global_grad_norm, max_grad_norm, self.use_nvlamb) |
|
|
|
return loss |
|
|