heroza commited on
Commit
4a67c80
·
verified ·
1 Parent(s): b01bf0b

Model save

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: segformer-finetuned-biofilm_MRCNNv1_validation
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # segformer-finetuned-biofilm_MRCNNv1_validation
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.0667
19
+ - Mean Iou: 0.4894
20
+ - Mean Accuracy: 0.9788
21
+ - Overall Accuracy: 0.9788
22
+ - Accuracy Background: 0.9788
23
+ - Accuracy Biofilm: nan
24
+ - Iou Background: 0.9788
25
+ - Iou Biofilm: 0.0
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 6e-05
45
+ - train_batch_size: 8
46
+ - eval_batch_size: 8
47
+ - seed: 1337
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: polynomial
50
+ - training_steps: 10000
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Biofilm | Iou Background | Iou Biofilm |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:----------------:|:--------------:|:-----------:|
56
+ | 0.0896 | 1.0 | 351 | 0.0405 | 0.4947 | 0.9894 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 |
57
+ | 0.0556 | 2.0 | 702 | 0.0459 | 0.4925 | 0.9849 | 0.9849 | 0.9849 | nan | 0.9849 | 0.0 |
58
+ | 0.0532 | 3.0 | 1053 | 0.0352 | 0.4931 | 0.9863 | 0.9863 | 0.9863 | nan | 0.9863 | 0.0 |
59
+ | 0.0473 | 4.0 | 1404 | 0.0318 | 0.4936 | 0.9872 | 0.9872 | 0.9872 | nan | 0.9872 | 0.0 |
60
+ | 0.0387 | 5.0 | 1755 | 0.0318 | 0.4928 | 0.9857 | 0.9857 | 0.9857 | nan | 0.9857 | 0.0 |
61
+ | 0.0388 | 6.0 | 2106 | 0.0394 | 0.4909 | 0.9817 | 0.9817 | 0.9817 | nan | 0.9817 | 0.0 |
62
+ | 0.0344 | 7.0 | 2457 | 0.0431 | 0.4906 | 0.9811 | 0.9811 | 0.9811 | nan | 0.9811 | 0.0 |
63
+ | 0.0409 | 8.0 | 2808 | 0.0347 | 0.4922 | 0.9844 | 0.9844 | 0.9844 | nan | 0.9844 | 0.0 |
64
+ | 0.0322 | 9.0 | 3159 | 0.0415 | 0.4910 | 0.9819 | 0.9819 | 0.9819 | nan | 0.9819 | 0.0 |
65
+ | 0.0331 | 10.0 | 3510 | 0.0558 | 0.4884 | 0.9767 | 0.9767 | 0.9767 | nan | 0.9767 | 0.0 |
66
+ | 0.0337 | 11.0 | 3861 | 0.0422 | 0.4923 | 0.9847 | 0.9847 | 0.9847 | nan | 0.9847 | 0.0 |
67
+ | 0.0357 | 12.0 | 4212 | 0.0421 | 0.4908 | 0.9816 | 0.9816 | 0.9816 | nan | 0.9816 | 0.0 |
68
+ | 0.0306 | 13.0 | 4563 | 0.0398 | 0.4913 | 0.9827 | 0.9827 | 0.9827 | nan | 0.9827 | 0.0 |
69
+ | 0.0324 | 14.0 | 4914 | 0.0488 | 0.4905 | 0.9810 | 0.9810 | 0.9810 | nan | 0.9810 | 0.0 |
70
+ | 0.0293 | 15.0 | 5265 | 0.0401 | 0.4918 | 0.9835 | 0.9835 | 0.9835 | nan | 0.9835 | 0.0 |
71
+ | 0.0243 | 16.0 | 5616 | 0.0499 | 0.4894 | 0.9788 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 |
72
+ | 0.0306 | 17.0 | 5967 | 0.0495 | 0.4902 | 0.9805 | 0.9805 | 0.9805 | nan | 0.9805 | 0.0 |
73
+ | 0.0267 | 18.0 | 6318 | 0.0498 | 0.4907 | 0.9813 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 |
74
+ | 0.0295 | 19.0 | 6669 | 0.0566 | 0.4903 | 0.9806 | 0.9806 | 0.9806 | nan | 0.9806 | 0.0 |
75
+ | 0.0263 | 20.0 | 7020 | 0.0658 | 0.4893 | 0.9786 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 |
76
+ | 0.0319 | 21.0 | 7371 | 0.0646 | 0.4885 | 0.9770 | 0.9770 | 0.9770 | nan | 0.9770 | 0.0 |
77
+ | 0.0236 | 22.0 | 7722 | 0.0608 | 0.4897 | 0.9793 | 0.9793 | 0.9793 | nan | 0.9793 | 0.0 |
78
+ | 0.0249 | 23.0 | 8073 | 0.0578 | 0.4897 | 0.9795 | 0.9795 | 0.9795 | nan | 0.9795 | 0.0 |
79
+ | 0.0242 | 24.0 | 8424 | 0.0558 | 0.4902 | 0.9804 | 0.9804 | 0.9804 | nan | 0.9804 | 0.0 |
80
+ | 0.0264 | 25.0 | 8775 | 0.0579 | 0.4899 | 0.9798 | 0.9798 | 0.9798 | nan | 0.9798 | 0.0 |
81
+ | 0.0235 | 26.0 | 9126 | 0.0582 | 0.4900 | 0.9801 | 0.9801 | 0.9801 | nan | 0.9801 | 0.0 |
82
+ | 0.0235 | 27.0 | 9477 | 0.0609 | 0.4897 | 0.9794 | 0.9794 | 0.9794 | nan | 0.9794 | 0.0 |
83
+ | 0.0204 | 28.0 | 9828 | 0.0648 | 0.4896 | 0.9791 | 0.9791 | 0.9791 | nan | 0.9791 | 0.0 |
84
+ | 0.023 | 28.49 | 10000 | 0.0667 | 0.4894 | 0.9788 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.38.0.dev0
90
+ - Pytorch 2.0.0+cu117
91
+ - Datasets 2.14.4
92
+ - Tokenizers 0.15.1