henryscheible
commited on
Commit
•
179fc25
1
Parent(s):
a3b9711
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- crows_pairs
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: bert-base-uncased_crows_pairs_classifieronly
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: crows_pairs
|
17 |
+
type: crows_pairs
|
18 |
+
config: crows_pairs
|
19 |
+
split: test
|
20 |
+
args: crows_pairs
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.5364238410596026
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# bert-base-uncased_crows_pairs_classifieronly
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the crows_pairs dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.6924
|
35 |
+
- Accuracy: 0.5364
|
36 |
+
- Tp: 0.0066
|
37 |
+
- Tn: 0.5298
|
38 |
+
- Fp: 0.0033
|
39 |
+
- Fn: 0.4603
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 0.0001
|
59 |
+
- train_batch_size: 64
|
60 |
+
- eval_batch_size: 64
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 50
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Tp | Tn | Fp | Fn |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:------:|:------:|
|
70 |
+
| 0.7219 | 1.05 | 20 | 0.7045 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
71 |
+
| 0.6962 | 2.11 | 40 | 0.6962 | 0.4669 | 0.4669 | 0.0 | 0.5331 | 0.0 |
|
72 |
+
| 0.6983 | 3.16 | 60 | 0.6925 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
73 |
+
| 0.7018 | 4.21 | 80 | 0.6962 | 0.4669 | 0.4669 | 0.0 | 0.5331 | 0.0 |
|
74 |
+
| 0.6972 | 5.26 | 100 | 0.6915 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
75 |
+
| 0.6964 | 6.32 | 120 | 0.6934 | 0.4801 | 0.1391 | 0.3411 | 0.1921 | 0.3278 |
|
76 |
+
| 0.6983 | 7.37 | 140 | 0.6940 | 0.4636 | 0.3709 | 0.0927 | 0.4404 | 0.0960 |
|
77 |
+
| 0.7025 | 8.42 | 160 | 0.6964 | 0.4669 | 0.4669 | 0.0 | 0.5331 | 0.0 |
|
78 |
+
| 0.6958 | 9.47 | 180 | 0.6919 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
79 |
+
| 0.7079 | 10.53 | 200 | 0.7002 | 0.4669 | 0.4669 | 0.0 | 0.5331 | 0.0 |
|
80 |
+
| 0.7033 | 11.58 | 220 | 0.6915 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
81 |
+
| 0.6932 | 12.63 | 240 | 0.6933 | 0.5 | 0.1060 | 0.3940 | 0.1391 | 0.3609 |
|
82 |
+
| 0.7075 | 13.68 | 260 | 0.6919 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
83 |
+
| 0.695 | 14.74 | 280 | 0.6936 | 0.4371 | 0.1523 | 0.2848 | 0.2483 | 0.3146 |
|
84 |
+
| 0.7068 | 15.79 | 300 | 0.6916 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
85 |
+
| 0.7007 | 16.84 | 320 | 0.6916 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
86 |
+
| 0.7035 | 17.89 | 340 | 0.6961 | 0.4669 | 0.4669 | 0.0 | 0.5331 | 0.0 |
|
87 |
+
| 0.7002 | 18.95 | 360 | 0.6919 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
88 |
+
| 0.6992 | 20.0 | 380 | 0.6930 | 0.5166 | 0.0331 | 0.4834 | 0.0497 | 0.4338 |
|
89 |
+
| 0.7024 | 21.05 | 400 | 0.6924 | 0.5364 | 0.0066 | 0.5298 | 0.0033 | 0.4603 |
|
90 |
+
| 0.694 | 22.11 | 420 | 0.6949 | 0.4669 | 0.4603 | 0.0066 | 0.5265 | 0.0066 |
|
91 |
+
| 0.7085 | 23.16 | 440 | 0.6928 | 0.5265 | 0.0199 | 0.5066 | 0.0265 | 0.4470 |
|
92 |
+
| 0.6999 | 24.21 | 460 | 0.6936 | 0.4338 | 0.1457 | 0.2881 | 0.2450 | 0.3212 |
|
93 |
+
| 0.6926 | 25.26 | 480 | 0.6921 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
94 |
+
| 0.7088 | 26.32 | 500 | 0.6923 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
95 |
+
| 0.6932 | 27.37 | 520 | 0.6922 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
96 |
+
| 0.7011 | 28.42 | 540 | 0.6925 | 0.5364 | 0.0066 | 0.5298 | 0.0033 | 0.4603 |
|
97 |
+
| 0.7016 | 29.47 | 560 | 0.6923 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
98 |
+
| 0.7015 | 30.53 | 580 | 0.6925 | 0.5364 | 0.0099 | 0.5265 | 0.0066 | 0.4570 |
|
99 |
+
| 0.7002 | 31.58 | 600 | 0.6929 | 0.5232 | 0.0331 | 0.4901 | 0.0430 | 0.4338 |
|
100 |
+
| 0.701 | 32.63 | 620 | 0.6932 | 0.5099 | 0.0563 | 0.4536 | 0.0795 | 0.4106 |
|
101 |
+
| 0.693 | 33.68 | 640 | 0.6921 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
102 |
+
| 0.711 | 34.74 | 660 | 0.6925 | 0.5364 | 0.0099 | 0.5265 | 0.0066 | 0.4570 |
|
103 |
+
| 0.7013 | 35.79 | 680 | 0.6924 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
104 |
+
| 0.6975 | 36.84 | 700 | 0.6916 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
105 |
+
| 0.7035 | 37.89 | 720 | 0.6918 | 0.5331 | 0.0 | 0.5331 | 0.0 | 0.4669 |
|
106 |
+
| 0.6991 | 38.95 | 740 | 0.6929 | 0.5232 | 0.0298 | 0.4934 | 0.0397 | 0.4371 |
|
107 |
+
| 0.7165 | 40.0 | 760 | 0.6923 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
108 |
+
| 0.7029 | 41.05 | 780 | 0.6931 | 0.5066 | 0.0464 | 0.4603 | 0.0728 | 0.4205 |
|
109 |
+
| 0.7021 | 42.11 | 800 | 0.6923 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
110 |
+
| 0.6993 | 43.16 | 820 | 0.6935 | 0.4934 | 0.1291 | 0.3642 | 0.1689 | 0.3377 |
|
111 |
+
| 0.7 | 44.21 | 840 | 0.6926 | 0.5331 | 0.0132 | 0.5199 | 0.0132 | 0.4536 |
|
112 |
+
| 0.7023 | 45.26 | 860 | 0.6926 | 0.5331 | 0.0099 | 0.5232 | 0.0099 | 0.4570 |
|
113 |
+
| 0.6961 | 46.32 | 880 | 0.6927 | 0.5232 | 0.0132 | 0.5099 | 0.0232 | 0.4536 |
|
114 |
+
| 0.7014 | 47.37 | 900 | 0.6923 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
115 |
+
| 0.7025 | 48.42 | 920 | 0.6924 | 0.5331 | 0.0033 | 0.5298 | 0.0033 | 0.4636 |
|
116 |
+
| 0.702 | 49.47 | 940 | 0.6924 | 0.5364 | 0.0066 | 0.5298 | 0.0033 | 0.4603 |
|
117 |
+
|
118 |
+
|
119 |
+
### Framework versions
|
120 |
+
|
121 |
+
- Transformers 4.26.1
|
122 |
+
- Pytorch 1.13.1
|
123 |
+
- Datasets 2.10.1
|
124 |
+
- Tokenizers 0.13.2
|