Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.78 +/- 1.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d54c93498c6810564acb487dca8c7c5dde20f48427361371d4275cae95a4806
|
3 |
+
size 108011
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe79a3919d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fe79a37fd20>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674163504122611121,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAy6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZrseP5zraD9MaA8/EC+4v2+Uzj97ypM/Sx8fP1E0Fr47XAg/AyMiPzOZhD9YXWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]]",
|
60 |
+
"desired_goal": "[[ 0.620047 0.9098451 0.5601852 ]\n [-1.4389362 1.6139048 1.1546167 ]\n [ 0.62157124 -0.14668395 0.5326573 ]\n [ 0.63334674 1.0359253 -0.89595556]]",
|
61 |
+
"observation": "[[ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAseetPcbQ372fozc+4pyqvdUPvjs/PyU9v4kUvZRf4T3S8HA+I2YIvkksez0B1wI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.08491457 -0.10928492 0.1793351 ]\n [-0.08330704 0.00580023 0.04034352]\n [-0.03626418 0.11004558 0.23529366]\n [-0.13320212 0.06132153 0.1277733 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVyO70jJS97+UhpRSlIwBbJRLMowBdJRHQKNRztfoicJ1fZQoaAZoCWgPQwg5KGGm7d8GwJSGlFKUaBVLMmgWR0CjUZQzLwF1dX2UKGgGaAloD0MIz7pGy4He97+UhpRSlGgVSzJoFkdAo1FZ+tr9EXV9lChoBmgJaA9DCB6oUx7dSPO/lIaUUpRoFUsyaBZHQKNRH6hxo7F1fZQoaAZoCWgPQwgYCtgORqz8v5SGlFKUaBVLMmgWR0CjUtG3WnTBdX2UKGgGaAloD0MI6KOMuAA0AsCUhpRSlGgVSzJoFkdAo1KXIfbKzXV9lChoBmgJaA9DCC4B+KdUaQPAlIaUUpRoFUsyaBZHQKNSXSSeRPp1fZQoaAZoCWgPQwiUSnhCr//2v5SGlFKUaBVLMmgWR0CjUiJfICEIdX2UKGgGaAloD0MI1sbYCS8hAMCUhpRSlGgVSzJoFkdAo1Pt4Z/CqXV9lChoBmgJaA9DCNO+ub96nADAlIaUUpRoFUsyaBZHQKNTs4+8oQZ1fZQoaAZoCWgPQwhXW7G/7P4EwJSGlFKUaBVLMmgWR0CjU3lQdjoZdX2UKGgGaAloD0MIey++aI+3A8CUhpRSlGgVSzJoFkdAo1M/H3lCC3V9lChoBmgJaA9DCPeRW5NuqwjAlIaUUpRoFUsyaBZHQKNU5/vv0Ad1fZQoaAZoCWgPQwjGGFjH8UMRwJSGlFKUaBVLMmgWR0CjVK2Tot+TdX2UKGgGaAloD0MIwtoYO+HlBcCUhpRSlGgVSzJoFkdAo1Rzm6oVEnV9lChoBmgJaA9DCEdX6e46G/W/lIaUUpRoFUsyaBZHQKNUOLfk3jx1fZQoaAZoCWgPQwhG66hqgmj9v5SGlFKUaBVLMmgWR0CjVfF9a2WqdX2UKGgGaAloD0MIYaku4GUG/b+UhpRSlGgVSzJoFkdAo1W3PiT+vXV9lChoBmgJaA9DCA4UeCef3gHAlIaUUpRoFUsyaBZHQKNVfUAksz51fZQoaAZoCWgPQwhfJoqQur0GwJSGlFKUaBVLMmgWR0CjVUKRuCPIdX2UKGgGaAloD0MIWG/UCtO3/7+UhpRSlGgVSzJoFkdAo1cDlA/s3XV9lChoBmgJaA9DCFvQe2MIQP2/lIaUUpRoFUsyaBZHQKNWyUTtb9t1fZQoaAZoCWgPQwhlVu9wO5QCwJSGlFKUaBVLMmgWR0CjVo9Qfp2VdX2UKGgGaAloD0MIIy4AjdKl97+UhpRSlGgVSzJoFkdAo1ZUnXumanV9lChoBmgJaA9DCGtI3GPpoxDAlIaUUpRoFUsyaBZHQKNYBECvHLl1fZQoaAZoCWgPQwgP8KSFywoIwJSGlFKUaBVLMmgWR0CjV8noouwpdX2UKGgGaAloD0MIGmoUkszq+b+UhpRSlGgVSzJoFkdAo1eQAuIykHV9lChoBmgJaA9DCGYUyy2tJgXAlIaUUpRoFUsyaBZHQKNXVWVeKKp1fZQoaAZoCWgPQwglA0AVN64FwJSGlFKUaBVLMmgWR0CjWQf82rGSdX2UKGgGaAloD0MIHm0csRY/AsCUhpRSlGgVSzJoFkdAo1jNzEJjUnV9lChoBmgJaA9DCK+ZfLPN7QrAlIaUUpRoFUsyaBZHQKNYk8JUo8Z1fZQoaAZoCWgPQwhMxca8jjj1v5SGlFKUaBVLMmgWR0CjWFkiliz+dX2UKGgGaAloD0MI3lZ6bTaW9L+UhpRSlGgVSzJoFkdAo1oKDGtITXV9lChoBmgJaA9DCPmdJjPeFgLAlIaUUpRoFUsyaBZHQKNZz6i0v5B1fZQoaAZoCWgPQwhgI0kQrgD/v5SGlFKUaBVLMmgWR0CjWZWRzRx+dX2UKGgGaAloD0MIs5quJ7r+EMCUhpRSlGgVSzJoFkdAo1la04R283V9lChoBmgJaA9DCC7/If32VQbAlIaUUpRoFUsyaBZHQKNbDHtF8Xx1fZQoaAZoCWgPQwgVVb/S+XAGwJSGlFKUaBVLMmgWR0CjWtJjDsMRdX2UKGgGaAloD0MIvLN224VGCsCUhpRSlGgVSzJoFkdAo1qYZ/CqInV9lChoBmgJaA9DCCiZnNoZhgDAlIaUUpRoFUsyaBZHQKNaXcxCY1J1fZQoaAZoCWgPQwjMfXIUIAoCwJSGlFKUaBVLMmgWR0CjXCKQRwqBdX2UKGgGaAloD0MIV3kCYaf4BcCUhpRSlGgVSzJoFkdAo1voUSIxg3V9lChoBmgJaA9DCHrE6LmF7va/lIaUUpRoFUsyaBZHQKNbrn+yZ8d1fZQoaAZoCWgPQwjGia92FIcEwJSGlFKUaBVLMmgWR0CjW3PBacI7dX2UKGgGaAloD0MIWTMyyF2EBcCUhpRSlGgVSzJoFkdAo10zm+0w8HV9lChoBmgJaA9DCPabielCLPS/lIaUUpRoFUsyaBZHQKNc+V6/qPh1fZQoaAZoCWgPQwhgBfhu88YIwJSGlFKUaBVLMmgWR0CjXL9hRZU2dX2UKGgGaAloD0MI9MKdCyMdCsCUhpRSlGgVSzJoFkdAo1yEtTUAk3V9lChoBmgJaA9DCLhX5q267gTAlIaUUpRoFUsyaBZHQKNeXEG7jDN1fZQoaAZoCWgPQwj04O6s3fb1v5SGlFKUaBVLMmgWR0CjXiKq4pc5dX2UKGgGaAloD0MIv5tu2SE+/L+UhpRSlGgVSzJoFkdAo13oq7ROUXV9lChoBmgJaA9DCGqiz0cZkQjAlIaUUpRoFUsyaBZHQKNdrfTkQwt1fZQoaAZoCWgPQwiA8Qwa+ucCwJSGlFKUaBVLMmgWR0CjX2raEi+tdX2UKGgGaAloD0MIVOBkG7iD97+UhpRSlGgVSzJoFkdAo18wN0/4ZnV9lChoBmgJaA9DCLXcmQmG8wXAlIaUUpRoFUsyaBZHQKNe9lU6xPh1fZQoaAZoCWgPQwisVbsmpOUQwJSGlFKUaBVLMmgWR0CjXruVHFxXdX2UKGgGaAloD0MIy9qmeFzU/r+UhpRSlGgVSzJoFkdAo2BywD/2kHV9lChoBmgJaA9DCFQcB14tdwbAlIaUUpRoFUsyaBZHQKNgOH6dlNF1fZQoaAZoCWgPQwjyXN+Hg6QLwJSGlFKUaBVLMmgWR0CjX/5eRgZ1dX2UKGgGaAloD0MIWdsUj4vq+r+UhpRSlGgVSzJoFkdAo1/De/Ho5nV9lChoBmgJaA9DCC9rYoGvyAPAlIaUUpRoFUsyaBZHQKNhfB3Roh91fZQoaAZoCWgPQwixbrw7Mpb4v5SGlFKUaBVLMmgWR0CjYUG8ujASdX2UKGgGaAloD0MIvma5bHRO97+UhpRSlGgVSzJoFkdAo2EHnGKhtnV9lChoBmgJaA9DCFnBb0OMVw3AlIaUUpRoFUsyaBZHQKNgzN9H+ZR1fZQoaAZoCWgPQwgeqb7zi/IOwJSGlFKUaBVLMmgWR0CjYoU65oXbdX2UKGgGaAloD0MIofXwZaJoCsCUhpRSlGgVSzJoFkdAo2JK9RJmNHV9lChoBmgJaA9DCFCqfToe8wrAlIaUUpRoFUsyaBZHQKNiEO8TSLJ1fZQoaAZoCWgPQwgnE7cKYmAEwJSGlFKUaBVLMmgWR0CjYdZRTCLudX2UKGgGaAloD0MI8rOR66Z0DcCUhpRSlGgVSzJoFkdAo2OLORkmQnV9lChoBmgJaA9DCIMZU7DGuQfAlIaUUpRoFUsyaBZHQKNjUOsDGLl1fZQoaAZoCWgPQwgDQBU3bjH/v5SGlFKUaBVLMmgWR0CjYxbExZdOdX2UKGgGaAloD0MI8tJNYhA4D8CUhpRSlGgVSzJoFkdAo2LcIgNgB3V9lChoBmgJaA9DCFIpdjQOJRPAlIaUUpRoFUsyaBZHQKNklmapgkV1fZQoaAZoCWgPQwhRTN4AM58SwJSGlFKUaBVLMmgWR0CjZFwN0/4ZdX2UKGgGaAloD0MIwqG3eHiP+7+UhpRSlGgVSzJoFkdAo2Qh8c+7lXV9lChoBmgJaA9DCKK0N/jCpAHAlIaUUpRoFUsyaBZHQKNj5whGH591fZQoaAZoCWgPQwjWOQZkr3cMwJSGlFKUaBVLMmgWR0CjZZybH6uXdX2UKGgGaAloD0MIh6JAn8hT/7+UhpRSlGgVSzJoFkdAo2ViLdepoHV9lChoBmgJaA9DCMeCwqBMo/e/lIaUUpRoFUsyaBZHQKNlKDZDiOx1fZQoaAZoCWgPQwjAQXv18dD9v5SGlFKUaBVLMmgWR0CjZO2JrLyMdX2UKGgGaAloD0MIlC79S1IpFsCUhpRSlGgVSzJoFkdAo2arkS26TXV9lChoBmgJaA9DCLOVl/xP/vm/lIaUUpRoFUsyaBZHQKNmcTURWcV1fZQoaAZoCWgPQwiIKvwZ3uwJwJSGlFKUaBVLMmgWR0CjZjdJz1brdX2UKGgGaAloD0MIxmzJqgiXBMCUhpRSlGgVSzJoFkdAo2X8iD/VAnV9lChoBmgJaA9DCK8I/reS/QbAlIaUUpRoFUsyaBZHQKNntSQYDT11fZQoaAZoCWgPQwj2fM1y2egKwJSGlFKUaBVLMmgWR0CjZ3tdqtYCdX2UKGgGaAloD0MIwXEZNzVwD8CUhpRSlGgVSzJoFkdAo2dCKR+z+nV9lChoBmgJaA9DCAorFVRUfQjAlIaUUpRoFUsyaBZHQKNnB/5tWMl1fZQoaAZoCWgPQwi5OZUMAFUAwJSGlFKUaBVLMmgWR0CjaLkSmIj4dX2UKGgGaAloD0MIQ6z+CMNABcCUhpRSlGgVSzJoFkdAo2h+waBI4HV9lChoBmgJaA9DCA7ZQLrYFALAlIaUUpRoFUsyaBZHQKNoRKxLTQV1fZQoaAZoCWgPQwh/+PnvwWsBwJSGlFKUaBVLMmgWR0CjaAny3CsPdX2UKGgGaAloD0MI7Q4pBkgUFMCUhpRSlGgVSzJoFkdAo2noegctG3V9lChoBmgJaA9DCFMj9DP1uvC/lIaUUpRoFUsyaBZHQKNprjZteld1fZQoaAZoCWgPQwhVbTfBNy0DwJSGlFKUaBVLMmgWR0CjaXQA+6iCdX2UKGgGaAloD0MItTf4wmSq/b+UhpRSlGgVSzJoFkdAo2k5jvuw5nV9lChoBmgJaA9DCNejcD0Kl/q/lIaUUpRoFUsyaBZHQKNrAla8pTd1fZQoaAZoCWgPQwjlCYSdYjULwJSGlFKUaBVLMmgWR0Cjasf8l5WzdX2UKGgGaAloD0MIqUpbXOOjEsCUhpRSlGgVSzJoFkdAo2qN+y7f53V9lChoBmgJaA9DCIP8bOS6KQfAlIaUUpRoFUsyaBZHQKNqU0hNdqt1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d162e3f88cc5b57c2180045c623daaf9fb7a996c62c84db9bab805b0a7a678e
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bff401ad576c67b20b4a0587d69fba56cf0298699812ab8545aca6458299d643
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe79a3919d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe79a37fd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674163504122611121, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAy6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZrseP5zraD9MaA8/EC+4v2+Uzj97ypM/Sx8fP1E0Fr47XAg/AyMiPzOZhD9YXWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]]", "desired_goal": "[[ 0.620047 0.9098451 0.5601852 ]\n [-1.4389362 1.6139048 1.1546167 ]\n [ 0.62157124 -0.14668395 0.5326573 ]\n [ 0.63334674 1.0359253 -0.89595556]]", "observation": "[[ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAseetPcbQ372fozc+4pyqvdUPvjs/PyU9v4kUvZRf4T3S8HA+I2YIvkksez0B1wI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08491457 -0.10928492 0.1793351 ]\n [-0.08330704 0.00580023 0.04034352]\n [-0.03626418 0.11004558 0.23529366]\n [-0.13320212 0.06132153 0.1277733 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVyO70jJS97+UhpRSlIwBbJRLMowBdJRHQKNRztfoicJ1fZQoaAZoCWgPQwg5KGGm7d8GwJSGlFKUaBVLMmgWR0CjUZQzLwF1dX2UKGgGaAloD0MIz7pGy4He97+UhpRSlGgVSzJoFkdAo1FZ+tr9EXV9lChoBmgJaA9DCB6oUx7dSPO/lIaUUpRoFUsyaBZHQKNRH6hxo7F1fZQoaAZoCWgPQwgYCtgORqz8v5SGlFKUaBVLMmgWR0CjUtG3WnTBdX2UKGgGaAloD0MI6KOMuAA0AsCUhpRSlGgVSzJoFkdAo1KXIfbKzXV9lChoBmgJaA9DCC4B+KdUaQPAlIaUUpRoFUsyaBZHQKNSXSSeRPp1fZQoaAZoCWgPQwiUSnhCr//2v5SGlFKUaBVLMmgWR0CjUiJfICEIdX2UKGgGaAloD0MI1sbYCS8hAMCUhpRSlGgVSzJoFkdAo1Pt4Z/CqXV9lChoBmgJaA9DCNO+ub96nADAlIaUUpRoFUsyaBZHQKNTs4+8oQZ1fZQoaAZoCWgPQwhXW7G/7P4EwJSGlFKUaBVLMmgWR0CjU3lQdjoZdX2UKGgGaAloD0MIey++aI+3A8CUhpRSlGgVSzJoFkdAo1M/H3lCC3V9lChoBmgJaA9DCPeRW5NuqwjAlIaUUpRoFUsyaBZHQKNU5/vv0Ad1fZQoaAZoCWgPQwjGGFjH8UMRwJSGlFKUaBVLMmgWR0CjVK2Tot+TdX2UKGgGaAloD0MIwtoYO+HlBcCUhpRSlGgVSzJoFkdAo1Rzm6oVEnV9lChoBmgJaA9DCEdX6e46G/W/lIaUUpRoFUsyaBZHQKNUOLfk3jx1fZQoaAZoCWgPQwhG66hqgmj9v5SGlFKUaBVLMmgWR0CjVfF9a2WqdX2UKGgGaAloD0MIYaku4GUG/b+UhpRSlGgVSzJoFkdAo1W3PiT+vXV9lChoBmgJaA9DCA4UeCef3gHAlIaUUpRoFUsyaBZHQKNVfUAksz51fZQoaAZoCWgPQwhfJoqQur0GwJSGlFKUaBVLMmgWR0CjVUKRuCPIdX2UKGgGaAloD0MIWG/UCtO3/7+UhpRSlGgVSzJoFkdAo1cDlA/s3XV9lChoBmgJaA9DCFvQe2MIQP2/lIaUUpRoFUsyaBZHQKNWyUTtb9t1fZQoaAZoCWgPQwhlVu9wO5QCwJSGlFKUaBVLMmgWR0CjVo9Qfp2VdX2UKGgGaAloD0MIIy4AjdKl97+UhpRSlGgVSzJoFkdAo1ZUnXumanV9lChoBmgJaA9DCGtI3GPpoxDAlIaUUpRoFUsyaBZHQKNYBECvHLl1fZQoaAZoCWgPQwgP8KSFywoIwJSGlFKUaBVLMmgWR0CjV8noouwpdX2UKGgGaAloD0MIGmoUkszq+b+UhpRSlGgVSzJoFkdAo1eQAuIykHV9lChoBmgJaA9DCGYUyy2tJgXAlIaUUpRoFUsyaBZHQKNXVWVeKKp1fZQoaAZoCWgPQwglA0AVN64FwJSGlFKUaBVLMmgWR0CjWQf82rGSdX2UKGgGaAloD0MIHm0csRY/AsCUhpRSlGgVSzJoFkdAo1jNzEJjUnV9lChoBmgJaA9DCK+ZfLPN7QrAlIaUUpRoFUsyaBZHQKNYk8JUo8Z1fZQoaAZoCWgPQwhMxca8jjj1v5SGlFKUaBVLMmgWR0CjWFkiliz+dX2UKGgGaAloD0MI3lZ6bTaW9L+UhpRSlGgVSzJoFkdAo1oKDGtITXV9lChoBmgJaA9DCPmdJjPeFgLAlIaUUpRoFUsyaBZHQKNZz6i0v5B1fZQoaAZoCWgPQwhgI0kQrgD/v5SGlFKUaBVLMmgWR0CjWZWRzRx+dX2UKGgGaAloD0MIs5quJ7r+EMCUhpRSlGgVSzJoFkdAo1la04R283V9lChoBmgJaA9DCC7/If32VQbAlIaUUpRoFUsyaBZHQKNbDHtF8Xx1fZQoaAZoCWgPQwgVVb/S+XAGwJSGlFKUaBVLMmgWR0CjWtJjDsMRdX2UKGgGaAloD0MIvLN224VGCsCUhpRSlGgVSzJoFkdAo1qYZ/CqInV9lChoBmgJaA9DCCiZnNoZhgDAlIaUUpRoFUsyaBZHQKNaXcxCY1J1fZQoaAZoCWgPQwjMfXIUIAoCwJSGlFKUaBVLMmgWR0CjXCKQRwqBdX2UKGgGaAloD0MIV3kCYaf4BcCUhpRSlGgVSzJoFkdAo1voUSIxg3V9lChoBmgJaA9DCHrE6LmF7va/lIaUUpRoFUsyaBZHQKNbrn+yZ8d1fZQoaAZoCWgPQwjGia92FIcEwJSGlFKUaBVLMmgWR0CjW3PBacI7dX2UKGgGaAloD0MIWTMyyF2EBcCUhpRSlGgVSzJoFkdAo10zm+0w8HV9lChoBmgJaA9DCPabielCLPS/lIaUUpRoFUsyaBZHQKNc+V6/qPh1fZQoaAZoCWgPQwhgBfhu88YIwJSGlFKUaBVLMmgWR0CjXL9hRZU2dX2UKGgGaAloD0MI9MKdCyMdCsCUhpRSlGgVSzJoFkdAo1yEtTUAk3V9lChoBmgJaA9DCLhX5q267gTAlIaUUpRoFUsyaBZHQKNeXEG7jDN1fZQoaAZoCWgPQwj04O6s3fb1v5SGlFKUaBVLMmgWR0CjXiKq4pc5dX2UKGgGaAloD0MIv5tu2SE+/L+UhpRSlGgVSzJoFkdAo13oq7ROUXV9lChoBmgJaA9DCGqiz0cZkQjAlIaUUpRoFUsyaBZHQKNdrfTkQwt1fZQoaAZoCWgPQwiA8Qwa+ucCwJSGlFKUaBVLMmgWR0CjX2raEi+tdX2UKGgGaAloD0MIVOBkG7iD97+UhpRSlGgVSzJoFkdAo18wN0/4ZnV9lChoBmgJaA9DCLXcmQmG8wXAlIaUUpRoFUsyaBZHQKNe9lU6xPh1fZQoaAZoCWgPQwisVbsmpOUQwJSGlFKUaBVLMmgWR0CjXruVHFxXdX2UKGgGaAloD0MIy9qmeFzU/r+UhpRSlGgVSzJoFkdAo2BywD/2kHV9lChoBmgJaA9DCFQcB14tdwbAlIaUUpRoFUsyaBZHQKNgOH6dlNF1fZQoaAZoCWgPQwjyXN+Hg6QLwJSGlFKUaBVLMmgWR0CjX/5eRgZ1dX2UKGgGaAloD0MIWdsUj4vq+r+UhpRSlGgVSzJoFkdAo1/De/Ho5nV9lChoBmgJaA9DCC9rYoGvyAPAlIaUUpRoFUsyaBZHQKNhfB3Roh91fZQoaAZoCWgPQwixbrw7Mpb4v5SGlFKUaBVLMmgWR0CjYUG8ujASdX2UKGgGaAloD0MIvma5bHRO97+UhpRSlGgVSzJoFkdAo2EHnGKhtnV9lChoBmgJaA9DCFnBb0OMVw3AlIaUUpRoFUsyaBZHQKNgzN9H+ZR1fZQoaAZoCWgPQwgeqb7zi/IOwJSGlFKUaBVLMmgWR0CjYoU65oXbdX2UKGgGaAloD0MIofXwZaJoCsCUhpRSlGgVSzJoFkdAo2JK9RJmNHV9lChoBmgJaA9DCFCqfToe8wrAlIaUUpRoFUsyaBZHQKNiEO8TSLJ1fZQoaAZoCWgPQwgnE7cKYmAEwJSGlFKUaBVLMmgWR0CjYdZRTCLudX2UKGgGaAloD0MI8rOR66Z0DcCUhpRSlGgVSzJoFkdAo2OLORkmQnV9lChoBmgJaA9DCIMZU7DGuQfAlIaUUpRoFUsyaBZHQKNjUOsDGLl1fZQoaAZoCWgPQwgDQBU3bjH/v5SGlFKUaBVLMmgWR0CjYxbExZdOdX2UKGgGaAloD0MI8tJNYhA4D8CUhpRSlGgVSzJoFkdAo2LcIgNgB3V9lChoBmgJaA9DCFIpdjQOJRPAlIaUUpRoFUsyaBZHQKNklmapgkV1fZQoaAZoCWgPQwhRTN4AM58SwJSGlFKUaBVLMmgWR0CjZFwN0/4ZdX2UKGgGaAloD0MIwqG3eHiP+7+UhpRSlGgVSzJoFkdAo2Qh8c+7lXV9lChoBmgJaA9DCKK0N/jCpAHAlIaUUpRoFUsyaBZHQKNj5whGH591fZQoaAZoCWgPQwjWOQZkr3cMwJSGlFKUaBVLMmgWR0CjZZybH6uXdX2UKGgGaAloD0MIh6JAn8hT/7+UhpRSlGgVSzJoFkdAo2ViLdepoHV9lChoBmgJaA9DCMeCwqBMo/e/lIaUUpRoFUsyaBZHQKNlKDZDiOx1fZQoaAZoCWgPQwjAQXv18dD9v5SGlFKUaBVLMmgWR0CjZO2JrLyMdX2UKGgGaAloD0MIlC79S1IpFsCUhpRSlGgVSzJoFkdAo2arkS26TXV9lChoBmgJaA9DCLOVl/xP/vm/lIaUUpRoFUsyaBZHQKNmcTURWcV1fZQoaAZoCWgPQwiIKvwZ3uwJwJSGlFKUaBVLMmgWR0CjZjdJz1brdX2UKGgGaAloD0MIxmzJqgiXBMCUhpRSlGgVSzJoFkdAo2X8iD/VAnV9lChoBmgJaA9DCK8I/reS/QbAlIaUUpRoFUsyaBZHQKNntSQYDT11fZQoaAZoCWgPQwj2fM1y2egKwJSGlFKUaBVLMmgWR0CjZ3tdqtYCdX2UKGgGaAloD0MIwXEZNzVwD8CUhpRSlGgVSzJoFkdAo2dCKR+z+nV9lChoBmgJaA9DCAorFVRUfQjAlIaUUpRoFUsyaBZHQKNnB/5tWMl1fZQoaAZoCWgPQwi5OZUMAFUAwJSGlFKUaBVLMmgWR0CjaLkSmIj4dX2UKGgGaAloD0MIQ6z+CMNABcCUhpRSlGgVSzJoFkdAo2h+waBI4HV9lChoBmgJaA9DCA7ZQLrYFALAlIaUUpRoFUsyaBZHQKNoRKxLTQV1fZQoaAZoCWgPQwh/+PnvwWsBwJSGlFKUaBVLMmgWR0CjaAny3CsPdX2UKGgGaAloD0MI7Q4pBkgUFMCUhpRSlGgVSzJoFkdAo2noegctG3V9lChoBmgJaA9DCFMj9DP1uvC/lIaUUpRoFUsyaBZHQKNprjZteld1fZQoaAZoCWgPQwhVbTfBNy0DwJSGlFKUaBVLMmgWR0CjaXQA+6iCdX2UKGgGaAloD0MItTf4wmSq/b+UhpRSlGgVSzJoFkdAo2k5jvuw5nV9lChoBmgJaA9DCNejcD0Kl/q/lIaUUpRoFUsyaBZHQKNrAla8pTd1fZQoaAZoCWgPQwjlCYSdYjULwJSGlFKUaBVLMmgWR0Cjasf8l5WzdX2UKGgGaAloD0MIqUpbXOOjEsCUhpRSlGgVSzJoFkdAo2qN+y7f53V9lChoBmgJaA9DCIP8bOS6KQfAlIaUUpRoFUsyaBZHQKNqU0hNdqt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (441 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.7760369847528636, "std_reward": 1.139578829612391, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T22:06:48.986580"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be322b9b862e170a9a557b93592e92c99e53830612994c2badd420744f613aa5
|
3 |
+
size 3212
|