hendoo commited on
Commit
3078f96
1 Parent(s): 96a6340

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -2.78 +/- 1.14
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d54c93498c6810564acb487dca8c7c5dde20f48427361371d4275cae95a4806
3
+ size 108011
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe79a3919d0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fe79a37fd20>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674163504122611121,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAy6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZrseP5zraD9MaA8/EC+4v2+Uzj97ypM/Sx8fP1E0Fr47XAg/AyMiPzOZhD9YXWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]]",
60
+ "desired_goal": "[[ 0.620047 0.9098451 0.5601852 ]\n [-1.4389362 1.6139048 1.1546167 ]\n [ 0.62157124 -0.14668395 0.5326573 ]\n [ 0.63334674 1.0359253 -0.89595556]]",
61
+ "observation": "[[ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAseetPcbQ372fozc+4pyqvdUPvjs/PyU9v4kUvZRf4T3S8HA+I2YIvkksez0B1wI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.08491457 -0.10928492 0.1793351 ]\n [-0.08330704 0.00580023 0.04034352]\n [-0.03626418 0.11004558 0.23529366]\n [-0.13320212 0.06132153 0.1277733 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVyO70jJS97+UhpRSlIwBbJRLMowBdJRHQKNRztfoicJ1fZQoaAZoCWgPQwg5KGGm7d8GwJSGlFKUaBVLMmgWR0CjUZQzLwF1dX2UKGgGaAloD0MIz7pGy4He97+UhpRSlGgVSzJoFkdAo1FZ+tr9EXV9lChoBmgJaA9DCB6oUx7dSPO/lIaUUpRoFUsyaBZHQKNRH6hxo7F1fZQoaAZoCWgPQwgYCtgORqz8v5SGlFKUaBVLMmgWR0CjUtG3WnTBdX2UKGgGaAloD0MI6KOMuAA0AsCUhpRSlGgVSzJoFkdAo1KXIfbKzXV9lChoBmgJaA9DCC4B+KdUaQPAlIaUUpRoFUsyaBZHQKNSXSSeRPp1fZQoaAZoCWgPQwiUSnhCr//2v5SGlFKUaBVLMmgWR0CjUiJfICEIdX2UKGgGaAloD0MI1sbYCS8hAMCUhpRSlGgVSzJoFkdAo1Pt4Z/CqXV9lChoBmgJaA9DCNO+ub96nADAlIaUUpRoFUsyaBZHQKNTs4+8oQZ1fZQoaAZoCWgPQwhXW7G/7P4EwJSGlFKUaBVLMmgWR0CjU3lQdjoZdX2UKGgGaAloD0MIey++aI+3A8CUhpRSlGgVSzJoFkdAo1M/H3lCC3V9lChoBmgJaA9DCPeRW5NuqwjAlIaUUpRoFUsyaBZHQKNU5/vv0Ad1fZQoaAZoCWgPQwjGGFjH8UMRwJSGlFKUaBVLMmgWR0CjVK2Tot+TdX2UKGgGaAloD0MIwtoYO+HlBcCUhpRSlGgVSzJoFkdAo1Rzm6oVEnV9lChoBmgJaA9DCEdX6e46G/W/lIaUUpRoFUsyaBZHQKNUOLfk3jx1fZQoaAZoCWgPQwhG66hqgmj9v5SGlFKUaBVLMmgWR0CjVfF9a2WqdX2UKGgGaAloD0MIYaku4GUG/b+UhpRSlGgVSzJoFkdAo1W3PiT+vXV9lChoBmgJaA9DCA4UeCef3gHAlIaUUpRoFUsyaBZHQKNVfUAksz51fZQoaAZoCWgPQwhfJoqQur0GwJSGlFKUaBVLMmgWR0CjVUKRuCPIdX2UKGgGaAloD0MIWG/UCtO3/7+UhpRSlGgVSzJoFkdAo1cDlA/s3XV9lChoBmgJaA9DCFvQe2MIQP2/lIaUUpRoFUsyaBZHQKNWyUTtb9t1fZQoaAZoCWgPQwhlVu9wO5QCwJSGlFKUaBVLMmgWR0CjVo9Qfp2VdX2UKGgGaAloD0MIIy4AjdKl97+UhpRSlGgVSzJoFkdAo1ZUnXumanV9lChoBmgJaA9DCGtI3GPpoxDAlIaUUpRoFUsyaBZHQKNYBECvHLl1fZQoaAZoCWgPQwgP8KSFywoIwJSGlFKUaBVLMmgWR0CjV8noouwpdX2UKGgGaAloD0MIGmoUkszq+b+UhpRSlGgVSzJoFkdAo1eQAuIykHV9lChoBmgJaA9DCGYUyy2tJgXAlIaUUpRoFUsyaBZHQKNXVWVeKKp1fZQoaAZoCWgPQwglA0AVN64FwJSGlFKUaBVLMmgWR0CjWQf82rGSdX2UKGgGaAloD0MIHm0csRY/AsCUhpRSlGgVSzJoFkdAo1jNzEJjUnV9lChoBmgJaA9DCK+ZfLPN7QrAlIaUUpRoFUsyaBZHQKNYk8JUo8Z1fZQoaAZoCWgPQwhMxca8jjj1v5SGlFKUaBVLMmgWR0CjWFkiliz+dX2UKGgGaAloD0MI3lZ6bTaW9L+UhpRSlGgVSzJoFkdAo1oKDGtITXV9lChoBmgJaA9DCPmdJjPeFgLAlIaUUpRoFUsyaBZHQKNZz6i0v5B1fZQoaAZoCWgPQwhgI0kQrgD/v5SGlFKUaBVLMmgWR0CjWZWRzRx+dX2UKGgGaAloD0MIs5quJ7r+EMCUhpRSlGgVSzJoFkdAo1la04R283V9lChoBmgJaA9DCC7/If32VQbAlIaUUpRoFUsyaBZHQKNbDHtF8Xx1fZQoaAZoCWgPQwgVVb/S+XAGwJSGlFKUaBVLMmgWR0CjWtJjDsMRdX2UKGgGaAloD0MIvLN224VGCsCUhpRSlGgVSzJoFkdAo1qYZ/CqInV9lChoBmgJaA9DCCiZnNoZhgDAlIaUUpRoFUsyaBZHQKNaXcxCY1J1fZQoaAZoCWgPQwjMfXIUIAoCwJSGlFKUaBVLMmgWR0CjXCKQRwqBdX2UKGgGaAloD0MIV3kCYaf4BcCUhpRSlGgVSzJoFkdAo1voUSIxg3V9lChoBmgJaA9DCHrE6LmF7va/lIaUUpRoFUsyaBZHQKNbrn+yZ8d1fZQoaAZoCWgPQwjGia92FIcEwJSGlFKUaBVLMmgWR0CjW3PBacI7dX2UKGgGaAloD0MIWTMyyF2EBcCUhpRSlGgVSzJoFkdAo10zm+0w8HV9lChoBmgJaA9DCPabielCLPS/lIaUUpRoFUsyaBZHQKNc+V6/qPh1fZQoaAZoCWgPQwhgBfhu88YIwJSGlFKUaBVLMmgWR0CjXL9hRZU2dX2UKGgGaAloD0MI9MKdCyMdCsCUhpRSlGgVSzJoFkdAo1yEtTUAk3V9lChoBmgJaA9DCLhX5q267gTAlIaUUpRoFUsyaBZHQKNeXEG7jDN1fZQoaAZoCWgPQwj04O6s3fb1v5SGlFKUaBVLMmgWR0CjXiKq4pc5dX2UKGgGaAloD0MIv5tu2SE+/L+UhpRSlGgVSzJoFkdAo13oq7ROUXV9lChoBmgJaA9DCGqiz0cZkQjAlIaUUpRoFUsyaBZHQKNdrfTkQwt1fZQoaAZoCWgPQwiA8Qwa+ucCwJSGlFKUaBVLMmgWR0CjX2raEi+tdX2UKGgGaAloD0MIVOBkG7iD97+UhpRSlGgVSzJoFkdAo18wN0/4ZnV9lChoBmgJaA9DCLXcmQmG8wXAlIaUUpRoFUsyaBZHQKNe9lU6xPh1fZQoaAZoCWgPQwisVbsmpOUQwJSGlFKUaBVLMmgWR0CjXruVHFxXdX2UKGgGaAloD0MIy9qmeFzU/r+UhpRSlGgVSzJoFkdAo2BywD/2kHV9lChoBmgJaA9DCFQcB14tdwbAlIaUUpRoFUsyaBZHQKNgOH6dlNF1fZQoaAZoCWgPQwjyXN+Hg6QLwJSGlFKUaBVLMmgWR0CjX/5eRgZ1dX2UKGgGaAloD0MIWdsUj4vq+r+UhpRSlGgVSzJoFkdAo1/De/Ho5nV9lChoBmgJaA9DCC9rYoGvyAPAlIaUUpRoFUsyaBZHQKNhfB3Roh91fZQoaAZoCWgPQwixbrw7Mpb4v5SGlFKUaBVLMmgWR0CjYUG8ujASdX2UKGgGaAloD0MIvma5bHRO97+UhpRSlGgVSzJoFkdAo2EHnGKhtnV9lChoBmgJaA9DCFnBb0OMVw3AlIaUUpRoFUsyaBZHQKNgzN9H+ZR1fZQoaAZoCWgPQwgeqb7zi/IOwJSGlFKUaBVLMmgWR0CjYoU65oXbdX2UKGgGaAloD0MIofXwZaJoCsCUhpRSlGgVSzJoFkdAo2JK9RJmNHV9lChoBmgJaA9DCFCqfToe8wrAlIaUUpRoFUsyaBZHQKNiEO8TSLJ1fZQoaAZoCWgPQwgnE7cKYmAEwJSGlFKUaBVLMmgWR0CjYdZRTCLudX2UKGgGaAloD0MI8rOR66Z0DcCUhpRSlGgVSzJoFkdAo2OLORkmQnV9lChoBmgJaA9DCIMZU7DGuQfAlIaUUpRoFUsyaBZHQKNjUOsDGLl1fZQoaAZoCWgPQwgDQBU3bjH/v5SGlFKUaBVLMmgWR0CjYxbExZdOdX2UKGgGaAloD0MI8tJNYhA4D8CUhpRSlGgVSzJoFkdAo2LcIgNgB3V9lChoBmgJaA9DCFIpdjQOJRPAlIaUUpRoFUsyaBZHQKNklmapgkV1fZQoaAZoCWgPQwhRTN4AM58SwJSGlFKUaBVLMmgWR0CjZFwN0/4ZdX2UKGgGaAloD0MIwqG3eHiP+7+UhpRSlGgVSzJoFkdAo2Qh8c+7lXV9lChoBmgJaA9DCKK0N/jCpAHAlIaUUpRoFUsyaBZHQKNj5whGH591fZQoaAZoCWgPQwjWOQZkr3cMwJSGlFKUaBVLMmgWR0CjZZybH6uXdX2UKGgGaAloD0MIh6JAn8hT/7+UhpRSlGgVSzJoFkdAo2ViLdepoHV9lChoBmgJaA9DCMeCwqBMo/e/lIaUUpRoFUsyaBZHQKNlKDZDiOx1fZQoaAZoCWgPQwjAQXv18dD9v5SGlFKUaBVLMmgWR0CjZO2JrLyMdX2UKGgGaAloD0MIlC79S1IpFsCUhpRSlGgVSzJoFkdAo2arkS26TXV9lChoBmgJaA9DCLOVl/xP/vm/lIaUUpRoFUsyaBZHQKNmcTURWcV1fZQoaAZoCWgPQwiIKvwZ3uwJwJSGlFKUaBVLMmgWR0CjZjdJz1brdX2UKGgGaAloD0MIxmzJqgiXBMCUhpRSlGgVSzJoFkdAo2X8iD/VAnV9lChoBmgJaA9DCK8I/reS/QbAlIaUUpRoFUsyaBZHQKNntSQYDT11fZQoaAZoCWgPQwj2fM1y2egKwJSGlFKUaBVLMmgWR0CjZ3tdqtYCdX2UKGgGaAloD0MIwXEZNzVwD8CUhpRSlGgVSzJoFkdAo2dCKR+z+nV9lChoBmgJaA9DCAorFVRUfQjAlIaUUpRoFUsyaBZHQKNnB/5tWMl1fZQoaAZoCWgPQwi5OZUMAFUAwJSGlFKUaBVLMmgWR0CjaLkSmIj4dX2UKGgGaAloD0MIQ6z+CMNABcCUhpRSlGgVSzJoFkdAo2h+waBI4HV9lChoBmgJaA9DCA7ZQLrYFALAlIaUUpRoFUsyaBZHQKNoRKxLTQV1fZQoaAZoCWgPQwh/+PnvwWsBwJSGlFKUaBVLMmgWR0CjaAny3CsPdX2UKGgGaAloD0MI7Q4pBkgUFMCUhpRSlGgVSzJoFkdAo2noegctG3V9lChoBmgJaA9DCFMj9DP1uvC/lIaUUpRoFUsyaBZHQKNprjZteld1fZQoaAZoCWgPQwhVbTfBNy0DwJSGlFKUaBVLMmgWR0CjaXQA+6iCdX2UKGgGaAloD0MItTf4wmSq/b+UhpRSlGgVSzJoFkdAo2k5jvuw5nV9lChoBmgJaA9DCNejcD0Kl/q/lIaUUpRoFUsyaBZHQKNrAla8pTd1fZQoaAZoCWgPQwjlCYSdYjULwJSGlFKUaBVLMmgWR0Cjasf8l5WzdX2UKGgGaAloD0MIqUpbXOOjEsCUhpRSlGgVSzJoFkdAo2qN+y7f53V9lChoBmgJaA9DCIP8bOS6KQfAlIaUUpRoFUsyaBZHQKNqU0hNdqt1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d162e3f88cc5b57c2180045c623daaf9fb7a996c62c84db9bab805b0a7a678e
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bff401ad576c67b20b4a0587d69fba56cf0298699812ab8545aca6458299d643
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe79a3919d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe79a37fd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674163504122611121, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAy6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/y6riPj7cTjx68hM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZrseP5zraD9MaA8/EC+4v2+Uzj97ypM/Sx8fP1E0Fr47XAg/AyMiPzOZhD9YXWW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbzLquI+PtxOPHryEz9BouS6HB5Hu2u7GbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]\n [0.4427093 0.01262575 0.57791865]]", "desired_goal": "[[ 0.620047 0.9098451 0.5601852 ]\n [-1.4389362 1.6139048 1.1546167 ]\n [ 0.62157124 -0.14668395 0.5326573 ]\n [ 0.63334674 1.0359253 -0.89595556]]", "observation": "[[ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]\n [ 0.4427093 0.01262575 0.57791865 -0.00174434 -0.00303829 -0.00938306]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAseetPcbQ372fozc+4pyqvdUPvjs/PyU9v4kUvZRf4T3S8HA+I2YIvkksez0B1wI+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08491457 -0.10928492 0.1793351 ]\n [-0.08330704 0.00580023 0.04034352]\n [-0.03626418 0.11004558 0.23529366]\n [-0.13320212 0.06132153 0.1277733 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVyO70jJS97+UhpRSlIwBbJRLMowBdJRHQKNRztfoicJ1fZQoaAZoCWgPQwg5KGGm7d8GwJSGlFKUaBVLMmgWR0CjUZQzLwF1dX2UKGgGaAloD0MIz7pGy4He97+UhpRSlGgVSzJoFkdAo1FZ+tr9EXV9lChoBmgJaA9DCB6oUx7dSPO/lIaUUpRoFUsyaBZHQKNRH6hxo7F1fZQoaAZoCWgPQwgYCtgORqz8v5SGlFKUaBVLMmgWR0CjUtG3WnTBdX2UKGgGaAloD0MI6KOMuAA0AsCUhpRSlGgVSzJoFkdAo1KXIfbKzXV9lChoBmgJaA9DCC4B+KdUaQPAlIaUUpRoFUsyaBZHQKNSXSSeRPp1fZQoaAZoCWgPQwiUSnhCr//2v5SGlFKUaBVLMmgWR0CjUiJfICEIdX2UKGgGaAloD0MI1sbYCS8hAMCUhpRSlGgVSzJoFkdAo1Pt4Z/CqXV9lChoBmgJaA9DCNO+ub96nADAlIaUUpRoFUsyaBZHQKNTs4+8oQZ1fZQoaAZoCWgPQwhXW7G/7P4EwJSGlFKUaBVLMmgWR0CjU3lQdjoZdX2UKGgGaAloD0MIey++aI+3A8CUhpRSlGgVSzJoFkdAo1M/H3lCC3V9lChoBmgJaA9DCPeRW5NuqwjAlIaUUpRoFUsyaBZHQKNU5/vv0Ad1fZQoaAZoCWgPQwjGGFjH8UMRwJSGlFKUaBVLMmgWR0CjVK2Tot+TdX2UKGgGaAloD0MIwtoYO+HlBcCUhpRSlGgVSzJoFkdAo1Rzm6oVEnV9lChoBmgJaA9DCEdX6e46G/W/lIaUUpRoFUsyaBZHQKNUOLfk3jx1fZQoaAZoCWgPQwhG66hqgmj9v5SGlFKUaBVLMmgWR0CjVfF9a2WqdX2UKGgGaAloD0MIYaku4GUG/b+UhpRSlGgVSzJoFkdAo1W3PiT+vXV9lChoBmgJaA9DCA4UeCef3gHAlIaUUpRoFUsyaBZHQKNVfUAksz51fZQoaAZoCWgPQwhfJoqQur0GwJSGlFKUaBVLMmgWR0CjVUKRuCPIdX2UKGgGaAloD0MIWG/UCtO3/7+UhpRSlGgVSzJoFkdAo1cDlA/s3XV9lChoBmgJaA9DCFvQe2MIQP2/lIaUUpRoFUsyaBZHQKNWyUTtb9t1fZQoaAZoCWgPQwhlVu9wO5QCwJSGlFKUaBVLMmgWR0CjVo9Qfp2VdX2UKGgGaAloD0MIIy4AjdKl97+UhpRSlGgVSzJoFkdAo1ZUnXumanV9lChoBmgJaA9DCGtI3GPpoxDAlIaUUpRoFUsyaBZHQKNYBECvHLl1fZQoaAZoCWgPQwgP8KSFywoIwJSGlFKUaBVLMmgWR0CjV8noouwpdX2UKGgGaAloD0MIGmoUkszq+b+UhpRSlGgVSzJoFkdAo1eQAuIykHV9lChoBmgJaA9DCGYUyy2tJgXAlIaUUpRoFUsyaBZHQKNXVWVeKKp1fZQoaAZoCWgPQwglA0AVN64FwJSGlFKUaBVLMmgWR0CjWQf82rGSdX2UKGgGaAloD0MIHm0csRY/AsCUhpRSlGgVSzJoFkdAo1jNzEJjUnV9lChoBmgJaA9DCK+ZfLPN7QrAlIaUUpRoFUsyaBZHQKNYk8JUo8Z1fZQoaAZoCWgPQwhMxca8jjj1v5SGlFKUaBVLMmgWR0CjWFkiliz+dX2UKGgGaAloD0MI3lZ6bTaW9L+UhpRSlGgVSzJoFkdAo1oKDGtITXV9lChoBmgJaA9DCPmdJjPeFgLAlIaUUpRoFUsyaBZHQKNZz6i0v5B1fZQoaAZoCWgPQwhgI0kQrgD/v5SGlFKUaBVLMmgWR0CjWZWRzRx+dX2UKGgGaAloD0MIs5quJ7r+EMCUhpRSlGgVSzJoFkdAo1la04R283V9lChoBmgJaA9DCC7/If32VQbAlIaUUpRoFUsyaBZHQKNbDHtF8Xx1fZQoaAZoCWgPQwgVVb/S+XAGwJSGlFKUaBVLMmgWR0CjWtJjDsMRdX2UKGgGaAloD0MIvLN224VGCsCUhpRSlGgVSzJoFkdAo1qYZ/CqInV9lChoBmgJaA9DCCiZnNoZhgDAlIaUUpRoFUsyaBZHQKNaXcxCY1J1fZQoaAZoCWgPQwjMfXIUIAoCwJSGlFKUaBVLMmgWR0CjXCKQRwqBdX2UKGgGaAloD0MIV3kCYaf4BcCUhpRSlGgVSzJoFkdAo1voUSIxg3V9lChoBmgJaA9DCHrE6LmF7va/lIaUUpRoFUsyaBZHQKNbrn+yZ8d1fZQoaAZoCWgPQwjGia92FIcEwJSGlFKUaBVLMmgWR0CjW3PBacI7dX2UKGgGaAloD0MIWTMyyF2EBcCUhpRSlGgVSzJoFkdAo10zm+0w8HV9lChoBmgJaA9DCPabielCLPS/lIaUUpRoFUsyaBZHQKNc+V6/qPh1fZQoaAZoCWgPQwhgBfhu88YIwJSGlFKUaBVLMmgWR0CjXL9hRZU2dX2UKGgGaAloD0MI9MKdCyMdCsCUhpRSlGgVSzJoFkdAo1yEtTUAk3V9lChoBmgJaA9DCLhX5q267gTAlIaUUpRoFUsyaBZHQKNeXEG7jDN1fZQoaAZoCWgPQwj04O6s3fb1v5SGlFKUaBVLMmgWR0CjXiKq4pc5dX2UKGgGaAloD0MIv5tu2SE+/L+UhpRSlGgVSzJoFkdAo13oq7ROUXV9lChoBmgJaA9DCGqiz0cZkQjAlIaUUpRoFUsyaBZHQKNdrfTkQwt1fZQoaAZoCWgPQwiA8Qwa+ucCwJSGlFKUaBVLMmgWR0CjX2raEi+tdX2UKGgGaAloD0MIVOBkG7iD97+UhpRSlGgVSzJoFkdAo18wN0/4ZnV9lChoBmgJaA9DCLXcmQmG8wXAlIaUUpRoFUsyaBZHQKNe9lU6xPh1fZQoaAZoCWgPQwisVbsmpOUQwJSGlFKUaBVLMmgWR0CjXruVHFxXdX2UKGgGaAloD0MIy9qmeFzU/r+UhpRSlGgVSzJoFkdAo2BywD/2kHV9lChoBmgJaA9DCFQcB14tdwbAlIaUUpRoFUsyaBZHQKNgOH6dlNF1fZQoaAZoCWgPQwjyXN+Hg6QLwJSGlFKUaBVLMmgWR0CjX/5eRgZ1dX2UKGgGaAloD0MIWdsUj4vq+r+UhpRSlGgVSzJoFkdAo1/De/Ho5nV9lChoBmgJaA9DCC9rYoGvyAPAlIaUUpRoFUsyaBZHQKNhfB3Roh91fZQoaAZoCWgPQwixbrw7Mpb4v5SGlFKUaBVLMmgWR0CjYUG8ujASdX2UKGgGaAloD0MIvma5bHRO97+UhpRSlGgVSzJoFkdAo2EHnGKhtnV9lChoBmgJaA9DCFnBb0OMVw3AlIaUUpRoFUsyaBZHQKNgzN9H+ZR1fZQoaAZoCWgPQwgeqb7zi/IOwJSGlFKUaBVLMmgWR0CjYoU65oXbdX2UKGgGaAloD0MIofXwZaJoCsCUhpRSlGgVSzJoFkdAo2JK9RJmNHV9lChoBmgJaA9DCFCqfToe8wrAlIaUUpRoFUsyaBZHQKNiEO8TSLJ1fZQoaAZoCWgPQwgnE7cKYmAEwJSGlFKUaBVLMmgWR0CjYdZRTCLudX2UKGgGaAloD0MI8rOR66Z0DcCUhpRSlGgVSzJoFkdAo2OLORkmQnV9lChoBmgJaA9DCIMZU7DGuQfAlIaUUpRoFUsyaBZHQKNjUOsDGLl1fZQoaAZoCWgPQwgDQBU3bjH/v5SGlFKUaBVLMmgWR0CjYxbExZdOdX2UKGgGaAloD0MI8tJNYhA4D8CUhpRSlGgVSzJoFkdAo2LcIgNgB3V9lChoBmgJaA9DCFIpdjQOJRPAlIaUUpRoFUsyaBZHQKNklmapgkV1fZQoaAZoCWgPQwhRTN4AM58SwJSGlFKUaBVLMmgWR0CjZFwN0/4ZdX2UKGgGaAloD0MIwqG3eHiP+7+UhpRSlGgVSzJoFkdAo2Qh8c+7lXV9lChoBmgJaA9DCKK0N/jCpAHAlIaUUpRoFUsyaBZHQKNj5whGH591fZQoaAZoCWgPQwjWOQZkr3cMwJSGlFKUaBVLMmgWR0CjZZybH6uXdX2UKGgGaAloD0MIh6JAn8hT/7+UhpRSlGgVSzJoFkdAo2ViLdepoHV9lChoBmgJaA9DCMeCwqBMo/e/lIaUUpRoFUsyaBZHQKNlKDZDiOx1fZQoaAZoCWgPQwjAQXv18dD9v5SGlFKUaBVLMmgWR0CjZO2JrLyMdX2UKGgGaAloD0MIlC79S1IpFsCUhpRSlGgVSzJoFkdAo2arkS26TXV9lChoBmgJaA9DCLOVl/xP/vm/lIaUUpRoFUsyaBZHQKNmcTURWcV1fZQoaAZoCWgPQwiIKvwZ3uwJwJSGlFKUaBVLMmgWR0CjZjdJz1brdX2UKGgGaAloD0MIxmzJqgiXBMCUhpRSlGgVSzJoFkdAo2X8iD/VAnV9lChoBmgJaA9DCK8I/reS/QbAlIaUUpRoFUsyaBZHQKNntSQYDT11fZQoaAZoCWgPQwj2fM1y2egKwJSGlFKUaBVLMmgWR0CjZ3tdqtYCdX2UKGgGaAloD0MIwXEZNzVwD8CUhpRSlGgVSzJoFkdAo2dCKR+z+nV9lChoBmgJaA9DCAorFVRUfQjAlIaUUpRoFUsyaBZHQKNnB/5tWMl1fZQoaAZoCWgPQwi5OZUMAFUAwJSGlFKUaBVLMmgWR0CjaLkSmIj4dX2UKGgGaAloD0MIQ6z+CMNABcCUhpRSlGgVSzJoFkdAo2h+waBI4HV9lChoBmgJaA9DCA7ZQLrYFALAlIaUUpRoFUsyaBZHQKNoRKxLTQV1fZQoaAZoCWgPQwh/+PnvwWsBwJSGlFKUaBVLMmgWR0CjaAny3CsPdX2UKGgGaAloD0MI7Q4pBkgUFMCUhpRSlGgVSzJoFkdAo2noegctG3V9lChoBmgJaA9DCFMj9DP1uvC/lIaUUpRoFUsyaBZHQKNprjZteld1fZQoaAZoCWgPQwhVbTfBNy0DwJSGlFKUaBVLMmgWR0CjaXQA+6iCdX2UKGgGaAloD0MItTf4wmSq/b+UhpRSlGgVSzJoFkdAo2k5jvuw5nV9lChoBmgJaA9DCNejcD0Kl/q/lIaUUpRoFUsyaBZHQKNrAla8pTd1fZQoaAZoCWgPQwjlCYSdYjULwJSGlFKUaBVLMmgWR0Cjasf8l5WzdX2UKGgGaAloD0MIqUpbXOOjEsCUhpRSlGgVSzJoFkdAo2qN+y7f53V9lChoBmgJaA9DCIP8bOS6KQfAlIaUUpRoFUsyaBZHQKNqU0hNdqt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (441 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.7760369847528636, "std_reward": 1.139578829612391, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T22:06:48.986580"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be322b9b862e170a9a557b93592e92c99e53830612994c2badd420744f613aa5
3
+ size 3212